Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Más filtros










Intervalo de año de publicación
1.
Chemphyschem ; : e202400308, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963877

RESUMEN

A theoretical study of the complexes formed by carbene like Al(I), Ga(I), In(I) and Tl(I) compounds with hydrogen bond donors (HBD), XH (HCCH, HSH ,HOH, HCN, HCl, HBr, HF, and HNC) have been carried out at MP2 computational level. The isolated triel(I) compounds show a negative region of the molecular electrostatic potential region associated with the triel atom suitable to interact with electron deficient groups. This region is associated to a lone pair based on the ELF analysis and to the location of the HOMO orbital. The complexes are similar to those found in nitrogen heterocyclic carbenes (NHC) with HBD. In addition, the oxidative addition reactions of those complexes to yield the corresponding valence III compounds have been characterized. The Al(III) compounds are much more stable than the corresponding Al(I) complexes. However, the stability of the triel(III) compounds decreases with the size of the triel atom and for the thallium derivatives, the Tl(I) complexes are more stable than the Tl(III) compounds in accordance with the number of the structures found in the CSD. The barrier of the TS connecting the triel(I) and triel(III) systems increases with the size of the triel atoms.

2.
Chemphyschem ; : e202400608, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950128

RESUMEN

Beryllium chemistry is typically governed by its electron deficient character, but in some compounds it can act as a base. In order to understand better the unusual basicity of Be, we have systematically explored the complexes of one such compound, Be(CO)3, towards several hydrogen bond donors HX (X = F, Cl, Br, CN, NC, CCH, OH). For all complexes we find three different minima, two hydrogen bonded minima (to the Be or O atoms), and one weak beryllium bonded minimum. Further characterization of the interactions using a topological analysis of the electron density and Symmetry Adapted Perturbation Theory (SAPT) provide insight into the nature of these interactions. Overall these results highlight the capability of certain beryllium compounds to act as either a weak Lewis acid or, unconventionally, a Lewis base whose basicity towards hydrogen bonding is comparable to that of π systems.

3.
Chempluschem ; : e202400314, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847398

RESUMEN

Equilibrium dissociation energies De of the hydrogen-bonded complexes HAl⋅⋅⋅HX and HGa⋅⋅⋅HX (X=F, Cl, Br, I, CN, CCH, and CP) were calculated ab initio at the CCSD(T)-(F12c)/cc-pVDZ-F12 level of theory. The gradients of graphs of De versus the electrophilicity EHX of the Lewis acids HX yielded the nucleophilicities NM-X of the Group 13 atoms M in these diatomic molecules. Molecular electrostatic surfaces potentials reveal that H-Al and H-Ga are bi-nucleophilic and that the H ends of these H-M molecules are more nucleophilic than the M ends for M=Al and Ga, but not when M=boron. Therefore, the complexes M-H⋅⋅⋅HX were investigated using the same approach. It was concluded for M=Al and Ga that, for a given X, the M-H⋅⋅⋅HX complexes were more strongly bound than the corresponding H-M⋅⋅⋅HX complexes for both M=Al and Ga but the reverse order applies for M = boron. The effects of substituting the H atoms in the M-H molecules by F atoms and by methyl groups were investigated to measure the -I and +I inductive effects relative to H, respectively, on the nucleophilicities of the molecules M-H when M is acting as hydrogen-bond acceptor in complexes H-M⋅⋅⋅H-X.

4.
J Mol Model ; 30(7): 201, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853233

RESUMEN

CONTEXT: A Conceptual DFT (CDFT) study has been carry out to analyse the coupling reactions of the simplest amine (CH3NH2), alcohol (CH3OH), and thiol (CH3SH) compounds with CO2 to form the corresponding adducts CH3NHCO2H, CH3OCO2H, and CH3SCO2H. The reaction mechanism takes place in a single step comprising two chemical events: nucleophilic attack of the non-metallic heteroatoms to CO2 followed by hydrogen atom transfer (HAT). According to our calculations, the participation of an additional nucleophilic molecule as HAT assistant entails important decreases in activation electronic energies. In such cases, the formation of a six-membered ring in the transition state (TS) reduces the angular stress with respect to the non-assisted paths, characterised by four-membered ring TSs. Through the analysis of the energy and reaction force profiles along the intrinsic reaction coordinate (IRC), the ratio of structural reorganisation and electronic rearrangement for both activation and relaxation energies has been computed. In addition, the analysis of the electronic chemical potential and reaction electronic flux profiles confirms that the highest electronic activity as well as their changes take place in the TS region. Finally, the distortion/interaction model using an energy decomposition scheme based on the electron density along the reaction coordinate has been carried out and the relative energy gradient (REG) method has been applied to identify the most important components associated to the barriers. METHODS: The theoretical calculation were performed with Gaussian-16 scientific program. The B3LYP-D3(BJ)/aug-cc-pVDZ level was used for optimization of the minima and TSs. IRC calculations has also been carried out connecting the TS with the associated minima. Conceptual-DFT (CDFT) calculations have been carried out with the Eyringpy program and in-house code. The distortion/interaction model along the reaction coordinate have used the decomposition scheme of Mandado et al. and the analysis of the importance of each components have been done with the relative energy gradient (REG) method.

5.
Chemistry ; : e202401536, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712946

RESUMEN

In 1977 Weiss and Grimes, by means of mass spectrometry and 1H and 11B NMR spectroscopy, proposed two structures (I and II) for the ferraborane (η5-C5H5)Fe(B5H10), isoelectronic with ferrocene. In this work, by means of high-level quantum-chemical computations, we confirm the experimental structures of the two isomers with their corresponding energies, and assign the reported 1H and 11B NMR chemical shifts. A striking result from this study is the planarization (3D→2D) of the B5H10 - ligand - an unknown isolated anion, isoelectronic with aromatic cyclopentadienyl anion C5H5 - - when attached to the (η5-C5H5)Fe+ moiety, thus resulting in a more stable ferraborane isomer II.

6.
J Comput Chem ; 45(20): 1702-1715, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38567760

RESUMEN

We have reported in the last years the strong effect that Be- and Mg-containing Lewis acids have on the intrinsic properties of typical bases, which become acids upon complexation. In an effort to investigate these changes when the Be and Mg derivatives form clusters of increasing size, we have examined the behavior of the (MX2)n (M = Be, Mg; X = H, F; n = 1, 2, 3) clusters when they interact with ammonia, methanimine, hydrogen cyanide and pyridine, and with their corresponding deprotonated forms. The complexes obtained at the M06-2X/aug-cc-pVTZ level were analyzed using the MBIE energy decomposition formalism, in parallel with QTAIM, ELF, NCIPLOT and AdNDP analyses of their electron density. For n = 1 the interaction enthalpy for the different families of monomers, Be (Mg) hydrides and Be (Mg) fluorides, follows the same trend as the intrinsic basicity of the base that interacts with them. This interaction is greatly reinforced after the deprotonation of the base, resulting in a significant enhancement of the intrinsic acidity of the corresponding MX2-Base complex. For (MX2)2 clusters a further reinforcement of the interaction with the base is observed, this reinforcement being again larger for the deprotonated complexes. However, the concomitant increase of their intrinsic acidity is one order of magnitude larger for hydrides than for fluorides. Unexpectedly, the cyclic conformers (MX2)3, which are more unstable than the linear ones, become the global minima after association with the base and the same is true for the deprotonated complex. Accordingly, a further increase of the intrinsic acidity of the (MX2)3-Base complexes with respect to the (MX2)2-Base ones is observed. This effect is maximum for (MgF2)3 clusters, to the point that the (MgF2)3-Base complexes become more acidic than nitric acid, the extreme case being the cluster (MgF2)3-NCH, whose acidity is higher than that of perchloric acid.

7.
J Phys Chem Lett ; 15(15): 4105-4110, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634115

RESUMEN

A large amount of scientific works have contributed through the years to rigorously reflect the different forces leading to the formation of hydrogen bonds, the electrostatic and polarization ones being the most important among them. However, we have witnessed lately with the emergence of a new terminology, anti-electrostatic hydrogen bonds (AEHBs), that seems to contradict this reality. This nomenclature is used in the literature to describe hydrogen bonds between equally charged systems to justify the existence of these species, despite numerous proofs showing that AEHBs are, as any other hydrogen bond between neutral species, mostly due to electrostatic forces. In this Viewpoint, we summarize the state of the art regarding this issue, try to explain why this terminology is very misleading, and strongly recommend avoiding its use based on the hydrogen bond physical grounds.

8.
Phys Chem Chem Phys ; 26(16): 12433-12443, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38596872

RESUMEN

The reactivity of B3N3-doped hexa-cata-hexabenzocoronene (B3N3-NG), Al3N3-NG, B3P3-NG and Al3P3-NG, models of doped nanographenes (NGs), towards carbon dioxide was studied with density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G* level of theory. The NG systems exhibit a poly-cyclic poly-frustrated Lewis pair (FLP) nature, featuring multiple Lewis acid/Lewis base pairs on their surface enabling the capture of several CO2 molecules. The capture of CO2 by these systems was investigated within two scenarios: (A) sequential capture of up to three CO2 molecules and (B) capture of CO2 molecules in the presence of a sodium cation. The resulting adducts were analyzed in terms of the activation barriers and relative stabilities. The presence of aluminium atoms changes the asynchrony of the reaction favoring the aluminium-oxygen bond and influences the regioselectivity of the multi-capture. A cooperative effect is predicted due to π-electron delocalization, with the sodium cation stabilizing the stationary points and favoring the addition of CO2 to the NGs.

9.
J Phys Chem A ; 128(7): 1288-1296, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38351470

RESUMEN

A theoretical study of the interaction between melamine and CO2 was carried out using density functional theory (DFT) with the B3LYP-D3(BJ)/aug-cc-pVTZ level of theory. The presence of anions interacting with melamine transforms the weakly bonded tetrel complexes into adducts. Thus, melamine acts as an FLP (frustrated Lewis pair) with acid groups (NHs as hydrogen bond donors) and a base group (N of the triazine ring). The application of the relative energy gradient formalism (REG) along the reaction coordinate has demonstrated that the ability of the melamine-anion systems to capture CO2 is linked to its capacity to polarize the CO2 molecule. These results have been confirmed by placing the melamine:CO2 complex in a uniform electric field with different strengths.

10.
Chemphyschem ; 25(7): e202400040, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38270533

RESUMEN

High-energetic materials belong to two main classes: propellants and explosives. The still rather unexplored family of 1,3,5,2,4,6-trioxatriazinanes, N3O3R3, has a representative of each class. We have selected three compounds, R = H, R = CH3 and R = NO2, this last compound being known as TNTOTA, "trinitro-trioxa-triazinane". Of these compounds we have studied the conformational analysis, the nitrogen inversion, the heats of formation, and the dissociation reaction into the three monomers. In addition, the corresponding 1,3,2,4-dioxadiazetidines (N2O2R2) have also been studied.

11.
Chemphyschem ; 25(7): e202300809, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38277470

RESUMEN

A comprehensive comparison between known benzene mono-substituted compounds R-Ph and the corresponding isoelectronic unknown R-cyclohexaborane(12) molecules is carried out from a geometric and electronic structure point of view, with R={H, BH2, CH3, NH2, OH, F ; AlH2, SiH3, PH2, SH, Cl ; NO2, OCH3}. We suggest new chemical names for the 2D borane compounds and analyze the geometric and electronic structure carbon vs. boron comparatives by means of HOMO-LUMO gaps, bonding schemes, electron density topological properties and predicted NMR chemical shifts. The predictions on the properties in planar hexagonal cyclic boranes may help in the design of synthesis procedures for these yet-unkown compounds.

12.
Chemphyschem ; 25(6): e202300750, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38215389

RESUMEN

The isolated (pyridin-2-ylmethyl)triel derivatives (triel=B, Al and Ga) show an intramolecular N⋅⋅⋅Tr triel bond as shown by compounds found in the Cambridge Structural Database and DFT calculations. The possibility to use them as masked frustrated Lewis pairs (mFLP) has been explored theoretically concerning their reaction with CO2 . The adduct formation proceeds in two steps. In the first one, the (pyridin-2-ylmethyl)triel derivatives break the intramolecular N⋅⋅⋅Tr bond assisted by CO2 and in the second step the adduct is formed with Tr-O and N-C covalent bonds. The corresponding energy minima and transition states (TS) of the reaction have been characterized and analyzed. The distortion/interaction model analysis of the stationary points indicates that the whole process can be divided in two parts: reorganization of the mFLP in the first steps of the reaction while the reaction with CO2 (associated to the distortion of this molecule) is more important in the formation of the final adduct. In all cases studied, the final products are more stable than the starting molecules that combine with reasonable TS energies indicating that these reactions can occur.

13.
Molecules ; 28(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005228

RESUMEN

In the search for common bonding patterns in pure and mixed clusters of beryllium and magnesium derivatives, the most stable dimers and trimers involving BeX2 and MgX2 (X = H, F, Cl) have been studied in the gas phase using B3LYP and M06-2X DFT methods and the G4 ab initio composite procedure. To obtain some insight into their structure, stability, and bonding characteristics, we have used two different energy decomposition formalisms, namely MBIE and LMO-EDA, in parallel with the analysis of the electron density with the help of QTAIM, ELF, NCIPLOT, and AdNDP approaches. Some interesting differences are already observed in the dimers, where the stability sequence observed for the hydrides differs entirely from that of the fluorides and chlorides. Trimers also show some peculiarities associated with the presence of compact trigonal cyclic structures that compete in stability with the more conventional hexagonal and linear forms. As observed for dimers, the stability of the trimers changes significantly from hydrides to fluorides or chlorides. Although some of these clusters were previously explored in the literature, the novelty of this work is to provide a holistic approach to the entire series of compounds by using chemical bonding tools, allowing us to understand the stability trends in detail and providing insights for a significant number of new, unexplored structures.

14.
Inorg Chem ; 62(40): 16523-16537, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37755334

RESUMEN

Multiply charged complexes bound by noncovalent interactions have been previously described in the literature, although they were mostly focused on organic and main group inorganic systems. In this work, we show that similar complexes can also be found for organometallic systems containing transition metals and deepen in the reasons behind the existence of these species. We have studied the structures, binding energies, and dissociation profiles in the gas phase of a series of charged hydrogen-bonded dimers of metallocene (Ru, Co, Rh, and Mn) derivatives isoelectronic with the ferrocene dimer. Our results indicate that the carboxylic acid-containing dimers are more strongly bonded and present larger barriers to dissociation than the amide ones and that the cationic complexes tend to be more stable than the anionic ones. Additionally, we describe for the first time the symmetric proton transfer that can occur while in the metastable phase. Finally, we use a density-based energy decomposition analysis to shine light on the nature of the interaction between the dimers.

15.
Phys Chem Chem Phys ; 25(33): 22512-22522, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37581605

RESUMEN

A theoretical study of the reaction between several borataacenes (1-methylboratabenzene, 9-methyl-9-borataanthracene and cis and trans diboratapentacene) and CO2 has been carried out at the M06-2X computational level. The influence of a counterion (potassium cation), the cation complexation by 18-crown-6-ether and solvent effects have been explored. The computational results predict anti/syn selectivity as found experimentally in the cis- and trans-diboratapentacene reaction with CO2 (Baker et al., J. Am. Chem. Soc., 2023, 145, 2028).

16.
J Phys Chem A ; 127(28): 5860-5871, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37418427

RESUMEN

The structure, stability, and bonding characteristics of dimers and trimers involving BX3 and AlX3 (X = H, F, Cl) in the gas phase, many of them explored for the first time, were investigated using different DFT (B3LYP, B3LYP/D3BJ, and M06-2X) and ab initio (MP2 and G4) methods together with different energy decomposition formalisms, namely, many-body interaction-energy and localized molecular orbital energy decomposition analysis. The electron density of the clusters investigated was analyzed with QTAIM, electron localization function, NCIPLOT, and adaptive natural density partitioning approaches. Our results for triel hydride dimers and Al2X6 (X = F, Cl) clusters are in good agreement with previous studies in the literature, but in contrast with the general accepted idea that B2F6 and B2Cl6 do not exist, we have found that they are predicted to be weakly bound systems if dispersion interactions are conveniently accounted for in the theoretical schemes used. Dispersion interactions are also dominant in both homo- and heterotrimers involving boron halide monomers. Surprisingly, B3F9 and B3Cl9 C3v cyclic trimers, in spite of exhibiting rather strong B-X (X = F, Cl) interactions, were found to be unstable with respect to the isolated monomers due to the high energetic cost of the rehybridization of the B atom, which is larger than the two- and three-body stabilization contributions when the cyclic is formed. Another important feature is the enhanced stability of both homo- and heterotrimers in which Al is the central atom because Al is systematically pentacoordinated, whereas this is not the case when the central atom is B, which is only tri- or tetra-coordinated.

17.
Chemphyschem ; 24(17): e202300214, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37350535

RESUMEN

Theoretical chemistry (DLPNO-CCSD(T)/def2-TZVP//M06-2x/aug-cc-pVDZ) was used to design a system based on ammonia boranes catalyzed by pyrazoles with the aim of producing dihydrogen, nowadays of high interest as clean fuel. The reactivity of ammonia borane and cyclotriborazane were investigated, including catalytic activation through 1H-pyrazole, 4-methoxy-1H-pyrazole, and 4-nitro-1H-pyrazole. The results point toward a catalytic cycle by which, at the same time, ammonia borane can initially store and then, through catalysis, produce dihydrogen and amino borane. Subsequently, amino borane can trimerize to form cyclotriborazane that, in presence of the same catalyst, can also produce dihydrogen. This study proposes therefore a consistent progress in using environmentally sustainable (metal free) catalysts to efficiently extract dihydrogen from small B-N bonded molecules.

18.
J Phys Chem A ; 127(21): 4715-4723, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37203459

RESUMEN

The strength of binding, as measured by the equilibrium dissociation energy De of an isolated hydrogen-bonded complex B···HX, where B is a simple Lewis base and X = F, Cl, Br, I, CN, CCH, or CP, can be determined from the properties of the infinitely separated components B and HX. The properties in question are the maximum and minimum values σmax(HX) and σmin(B) of the molecular electrostatic surface potentials on the 0.001 e/bohr3 iso-surfaces of HX and B, respectively, and two recently defined quantities: the reduced electrophilicity ΞHX of HX and the reduced nucleophilicity ИB of B. It is shown that De is given by the expression De = {σmax(HX)σmin(B)} ИB ΞHX. This is tested by comparing De calculated ab initio at the CCSD(T)(F12c)/cc-pVDZ-F12 level of theory with that obtained from the equation. A large number of complexes (203) falling into four categories involving different types of hydrogen-bonded complex B···HX are investigated: those in which the hydrogen-bond acceptor atom of B is either oxygen or nitrogen, or carbon or boron. The comparison reveals that the proposed equation leads to De values in good agreement in general with those calculated ab initio.

19.
Chempluschem ; 88(2): e202300032, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36744633

RESUMEN

Reduced nucleophilicities ИB of axially symmetric molecules B were determined from , where De is the equilibrium dissociation energy of the complexes B⋅⋅⋅XY, NB is the nucleophilicity of B, EXY is the electrophilicity of the halogen-bond donor XY and σ min ${{\sigma }_{{\rm { min}}}{\rm \ }}$ is the minimum electrostatic surface potential of B. The series B⋅⋅⋅ClY, B⋅⋅⋅BrY, B⋅⋅⋅IY (Y=F, Cl, Br, I, CN, and CCH) as well as (B⋅⋅⋅XY, XY=F2 , Cl2 , Br2 ,and BrCl) of complexes were investigated. Molecules B were grouped so that the terminal atom involved in the halogen bond was fixed within the group. Groups having N as the terminal atom were RCN (R=CH3 , H, and F) or RN (R=N and P), those with C as the terminal atom were RNC (R=H and F) and RC (R=O, S and Se), and those with a terminal O atom were R=C=O (R=O or S). Graphs of D e ${{D}_{{\rm { e}}}}$ versus EXY for each group were straight lines through the origin, with generally different gradients, hence implying different NB . By contrast, when D e / σ min ${{D}_{{\rm { e}}}/{\sigma }_{{\rm { min}}}}$ was the ordinate the lines conflated to give a single straight line, which then defines a common (reduced) nucleophilicity ИB for that group of B. Hence it was concluded that ИB is an intrinsic property of the terminal atom, independent of the remainder of B, and only weakly dependent on the type (C, N or O) of the terminal atom. Moreover, ИB for each B was the same as determined previously from the hydrogen-bonded series B⋅⋅⋅HX, (X=F, Cl, Br, I, CN, CCH, and CP).

20.
Sci Rep ; 13(1): 2407, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765069

RESUMEN

The reactivity of a B3P3-doped hexa-cata-hexabenzocoronene, as a model of nanographene (B3P3-NG), towards carbon dioxide was studied at the DFT M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G* level of theory. This compound can be classified as a poly-cyclic poly-Frustrated Lewis Pair (FLP) system, as it presents more than one Lewis Acid/Lewis Base pair on its surface, making the capture of several carbon dioxide molecules possible. Two scenarios were considered to fully characterize the capture of CO2 by this multi-FLP system: (i) fixation of three CO2 molecules sequentially one by one; and (ii) simultaneous contact of three CO2 molecules with the B3P3-NG surface. The resulting adducts were analyzed as function of activation barriers and the relative stability of the CO2 capture. A cooperativity effect due to the π-delocalization of the hexa-cata-hexabenzocoronene is observed. The fixation of a CO2 molecule modifies the electronic properties. It enhances the capture of additional CO2 molecules by changing the acidy and basicity of the rest of the boron and phosphorus atoms in the B3P3-NG system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...