Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706429

RESUMEN

Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.

2.
Plant Physiol Biochem ; 207: 108365, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266563

RESUMEN

The order of Cyanidiales comprises seven acido-thermophilic red microalgal species thriving in hot springs of volcanic origin characterized by extremely low pH, moderately high temperatures and the presence of high concentrations of sulphites and heavy metals that are prohibitive for most other organisms. Little is known about the physiological processes underlying the long-term adaptation of these extremophiles to such hostile environments. Here, we investigated the long-term adaptive responses of a red microalga Cyanidioschyzon merolae, a representative of Cyanidiales, to extremely high nickel concentrations. By the comprehensive physiological, microscopic and elemental analyses we dissected the key physiological processes underlying the long-term adaptation of this model extremophile to high Ni exposure. These include: (i) prevention of significant Ni accumulation inside the cells; (ii) activation of the photoprotective response of non-photochemical quenching; (iii) significant changes of the chloroplast ultrastructure associated with the formation of prolamellar bodies and plastoglobuli together with loosening of the thylakoid membranes; (iv) activation of ROS amelioration machinery; and (v) maintaining the efficient respiratory chain functionality. The dynamically regulated processes identified in this study are discussed in the context of the mechanisms driving the remarkable adaptability of C. merolae to extremely high Ni levels exceeding by several orders of magnitude those found in the natural environment of the microalga. The processes identified in this study provide a solid basis for the future investigation of the specific molecular components and pathways involved in the adaptation of Cyanidiales to the extremely high Ni concentrations.


Asunto(s)
Extremófilos , Microalgas , Níquel , Cloroplastos
3.
J Mater Chem B ; 11(36): 8788-8803, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37668222

RESUMEN

We demonstrate the construction of water-stable, biocompatible and self-standing hydrogels as scaffolds for the photosynthetic production of ethylene using a bioinspired all-polysaccharidic design combining TEMPO-oxidised cellulose nanofibers (TCNF) and a cereal plant hemicellulose called mixed-linkage glucan (MLG). We compared three different molecular weight MLGs from barley to increase the wet strength of TCNF hydrogels, and to reveal the mechanisms defining the favourable interactions between the scaffold components. The interactions between MLGs and TCNF were revealed via adsorption studies and interfacial rheology investigations using quartz crystal microbalance with dissipation monitoring (QCM-D). Our results show that both the MLG solution stability and adsorption behaviour did not exactly follow the well-known polymer adsorption and solubility theories especially in the presence of co-solute ions, in this case nitrates. We prepared hydrogel scaffolds for microalgal immobilisation, and high wet strength hydrogels were achieved with very low dosages of MLG (0.05 wt%) to the TCNF matrix. The all-polysaccharic biocatalytic architectures remained stable and produced ethylene for 120 h with yields comparable to the state-of-the-art scaffolds. Due to its natural origin and biodegradability, MLG offers a clear advantage in comparison to synthetic scaffold components, allowing the mechanical properties and water interactions to be tailored.


Asunto(s)
Glucanos , Polisacáridos , Etilenos , Hidrogeles
4.
Biomacromolecules ; 24(8): 3484-3497, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37384553

RESUMEN

To develop efficient solid-state photosynthetic cell factories for sustainable chemical production, we present an interdisciplinary experimental toolbox to investigate and interlink the structure, operative stability, and gas transfer properties of alginate- and nanocellulose-based hydrogel matrices with entrapped wild-type Synechocystis PCC 6803 cyanobacteria. We created a rheological map based on the mechanical performance of the hydrogel matrices. The results highlighted the importance of Ca2+-cross-linking and showed that nanocellulose matrices possess higher yield properties, and alginate matrices possess higher rest properties. We observed higher porosity for nanocellulose-based matrices in a water-swollen state via calorimetric thermoporosimetry and scanning electron microscopy imaging. Finally, by pioneering a gas flux analysis via membrane-inlet mass spectrometry for entrapped cells, we observed that the porosity and rigidity of the matrices are connected to their gas exchange rates over time. Overall, these findings link the dynamic properties of the life-sustaining matrix to the performance of the immobilized cells in tailored solid-state photosynthetic cell factories.


Asunto(s)
Alginatos , Andamios del Tejido , Alginatos/química , Porosidad , Andamios del Tejido/química , Hidrogeles/química , Fotosíntesis
5.
Physiol Plant ; 175(2): e13911, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37043258

RESUMEN

We investigated the biostimulant potential of six microalgal species from Nordic collections extracted with two different procedures: thermal hydrolysis with a weak solution of sulfuric acid accompanied by ultrasonication and bead-milling with aqueous extraction followed by centrifugation. To this aim, we designed a phenotyping pipeline consisting of a root growth assay in the model plant Arabidopsis thaliana, complemented with greenhouse experiments to evaluate lettuce yield (Lactuca sativa L. cv. Finstar) and photosynthetic performance. The best-performing hydrolyzed extracts stimulated Arabidopsis root elongation by 8%-13% and lettuce yield by 12%-15%. The in situ measured photosynthetic performance of lettuce was upregulated in the efficient extracts: PSII quantum yield increased by 26%-34%, and thylakoid proton flux increase was in the range of 34%-60%. In contrast, aqueous extracts acquired by bead-milling showed high dependence on biomass concentration in the extract and an overall plant growth enhancement was not attained in any of the applied dosages. Our results indicate that hydrolysis of the biomass can be a decisive factor for rendering effective plant biostimulants from microalgae.


Asunto(s)
Arabidopsis , Microalgas , Fotosíntesis , Desarrollo de la Planta , Tilacoides , Agua
6.
Biotechnol Biofuels Bioprod ; 16(1): 4, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609316

RESUMEN

BACKGROUND: Cyanobacteria have emerged as highly efficient organisms for the production of chemicals and biofuels. Yet, the productivity of the cell has been low for commercial application. Cyanobacterial photobiotransformations utilize photosynthetic electrons to form reducing equivalents, such as NADPH-to-fuel biocatalytic reactions. These photobiotransformations are a measure to which extent photosynthetic electrons can be deviated toward heterologous biotechnological processes, such as the production of biofuels. By expressing oxidoreductases, such as YqjM from Bacillus subtilis in Synechocystis sp. PCC 6803, a high specific activity was obtained in the reduction of maleimides. Here, we investigated the possibility to accelerate the NAD(P)H-consuming redox reactions by addition of carbohydrates as exogenous carbon sources such as D-Glucose under light and darkness. RESULTS: A 1.7-fold increase of activity (150 µmol min-1 gDCW-1) was observed upon addition of D-Glucose at an OD750 = 2.5 (DCW = 0.6 g L-1) in the biotransformation of 2-methylmaleimide. The stimulating effect of D-Glucose was also observed at higher cell densities in light and dark conditions as well as in the reduction of other substrates. No increase in both effective photosynthetic yields of Photosystem II and Photosystem I was found upon D-Glucose addition. However, we observed higher NAD(P)H fluorescence when D-Glucose was supplemented, suggesting increased glycolytic activity. Moreover, the system was scaled-up (working volume of 200 mL) in an internally illuminated Bubble Column Reactor exhibiting a 2.4-fold increase of specific activity under light-limited conditions. CONCLUSIONS: Results show that under photoautotrophic conditions at a specific activity of 90 µmol min-1 gDCW-1, the ene-reductase YqjM in Synechocystis sp. PCC 6803 is not NAD(P)H saturated, which is an indicator that an increase of the rates of heterologous electron consuming processes for catalysis and biofuel production will require funnelling further reducing power from the photosynthetic chain toward heterologous processes.

7.
New Phytol ; 237(1): 126-139, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36128660

RESUMEN

The model heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a typical example of a multicellular organism capable of simultaneously performing oxygenic photosynthesis in vegetative cells and O2 -sensitive N2 -fixation inside heterocysts. The flavodiiron proteins have been shown to participate in photoprotection of photosynthesis by driving excess electrons to O2 (a Mehler-like reaction). Here, we performed a phenotypic and biophysical characterization of Anabaena mutants impaired in vegetative-specific Flv1A and Flv3A in order to address their physiological relevance in the bioenergetic processes occurring in diazotrophic Anabaena under variable CO2 conditions. We demonstrate that both Flv1A and Flv3A are required for proper induction of the Mehler-like reaction upon a sudden increase in light intensity, which is likely important for the activation of carbon-concentrating mechanisms and CO2 fixation. Under ambient CO2 diazotrophic conditions, Flv3A is responsible for moderate O2 photoreduction, independently of Flv1A, but only in the presence of Flv2 and Flv4. Strikingly, the lack of Flv3A resulted in strong downregulation of the heterocyst-specific uptake hydrogenase, which led to enhanced H2 photoproduction under both oxic and micro-oxic conditions. These results reveal a novel regulatory network between the Mehler-like reaction and the diazotrophic metabolism, which is of great interest for future biotechnological applications.


Asunto(s)
Anabaena , Dióxido de Carbono , Dióxido de Carbono/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Anabaena/genética , Anabaena/metabolismo , Oxígeno/metabolismo , Fotosíntesis/fisiología
8.
Biotechnol Biofuels Bioprod ; 15(1): 146, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575466

RESUMEN

BACKGROUND: Whole-cell biotransformation is a promising emerging technology for the production of chemicals. When using heterotrophic organisms such as E. coli and yeast as biocatalysts, the dependence on organic carbon source impairs the sustainability and economic viability of the process. As a promising alternative, photosynthetic cyanobacteria with low nutrient requirements and versatile metabolism, could offer a sustainable platform for the heterologous production of organic compounds directly from sunlight and CO2. This strategy has been applied for the photoautotrophic production of sucrose by a genetically engineered cyanobacterium, Synechocystis sp. PCC 6803 strain S02. As the key concept in the current work, this can be further used to generate organic carbon compounds for different heterotrophic applications, including for the whole-cell biotransformation by yeast and bacteria. RESULTS: Entrapment of Synechocystis S02 cells in Ca2+-cross-linked alginate hydrogel beads improves the specific sucrose productivity by 86% compared to suspension cultures during 7 days of cultivation under salt stress. The process was further prolonged by periodically changing the medium in the vials for up to 17 days of efficient production, giving the final sucrose yield slightly above 3000 mg l-1. We successfully demonstrated that the medium enriched with photosynthetically produced sucrose by immobilized Synechocystis S02 cells supports the biotransformation of cyclohexanone to ε-caprolactone by the E. coli WΔcscR Inv:Parvi strain engineered to (i) utilize low concentrations of sucrose and (ii) perform biotransformation of cyclohexanone to ε-caprolactone. CONCLUSION: We conclude that cell entrapment in Ca2+-alginate beads is an effective method to prolong sucrose production by the engineered cyanobacteria, while allowing efficient separation of the cells from the medium. This advantage opens up novel possibilities to create advanced autotroph-heterotroph coupled cultivation systems for solar-driven production of chemicals via biotransformation, as demonstrated in this work by utilizing the photosynthetically produced sucrose to drive the conversion of cyclohexanone to ε-caprolactone by engineered E. coli.

9.
Front Microbiol ; 13: 891895, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694301

RESUMEN

Proteomes of an oxygenic photosynthetic cyanobacterium, Synechocystis sp. PCC 6803, were analyzed under photoautotrophic (low and high CO2, assigned as ATLC and ATHC), photomixotrophic (MT), and light-activated heterotrophic (LAH) conditions. Allocation of proteome mass fraction to seven sub-proteomes and differential expression of individual proteins were analyzed, paying particular attention to photosynthesis and carbon metabolism-centered sub-proteomes affected by the quality and quantity of the carbon source and light regime upon growth. A distinct common feature of the ATHC, MT, and LAH cultures was low abundance of inducible carbon-concentrating mechanisms and photorespiration-related enzymes, independent of the inorganic or organic carbon source. On the other hand, these cells accumulated a respiratory NAD(P)H dehydrogenase I (NDH-11) complex in the thylakoid membrane (TM). Additionally, in glucose-supplemented cultures, a distinct NDH-2 protein, NdbA, accumulated in the TM, while the plasma membrane-localized NdbC and terminal oxidase decreased in abundance in comparison to both AT conditions. Photosynthetic complexes were uniquely depleted under the LAH condition but accumulated under the ATHC condition. The MT proteome displayed several heterotrophic features typical of the LAH proteome, particularly including the high abundance of ribosome as well as amino acid and protein biosynthesis machinery-related components. It is also noteworthy that the two equally light-exposed ATHC and MT cultures allocated similar mass fractions of the total proteome to the seven distinct sub-proteomes. Unique trophic condition-specific expression patterns were likewise observed among individual proteins, including the accumulation of phosphate transporters and polyphosphate polymers storing energy surplus in highly energetic bonds under the MT condition and accumulation under the LAH condition of an enzyme catalyzing cyanophycin biosynthesis. It is concluded that the rigor of cell growth in the MT condition results, to a great extent, by combining photosynthetic activity with high intracellular inorganic carbon conditions created upon glucose breakdown and release of CO2, besides the direct utilization of glucose-derived carbon skeletons for growth. This combination provides the MT cultures with excellent conditions for growth that often exceeds that of mere ATHC.

10.
ACS Catal ; 12(1): 66-72, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35036041

RESUMEN

Baeyer-Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to lactones under very mild reaction conditions. This enzymatic route is hindered by the requirement of a stoichiometric supply of auxiliary substrates for cofactor recycling and difficulties with supplying the necessary oxygen. The recombinant production of BVMO in cyanobacteria allows the substitution of auxiliary organic cosubstrates with water as an electron donor and the utilization of oxygen generated by photosynthetic water splitting. Herein, we report the identification of a BVMO from Burkholderia xenovorans (BVMO Xeno ) that exhibits higher reaction rates in comparison to currently identified BVMOs. We report a 10-fold increase in specific activity in comparison to cyclohexanone monooxygenase (CHMO Acineto ) in Synechocystis sp. PCC 6803 (25 vs 2.3 U gDCW -1 at an optical density of OD750 = 10) and an initial rate of 3.7 ± 0.2 mM h-1. While the cells containing CHMO Acineto showed a considerable reduction of cyclohexanone to cyclohexanol, this unwanted side reaction was almost completely suppressed for BVMO Xeno , which was attributed to the much faster lactone formation and a 10-fold lower K M value of BVMO Xeno toward cyclohexanone. Furthermore, the whole-cell catalyst showed outstanding stereoselectivity. These results show that, despite the self-shading of the cells, high specific activities can be obtained at elevated cell densities and even further increased through manipulation of the photosynthetic electron transport chain (PETC). The obtained rates of up to 3.7 mM h-1 underline the usefulness of oxygenic cyanobacteria as a chassis for enzymatic oxidation reactions. The photosynthetic oxygen evolution can contribute to alleviating the highly problematic oxygen mass-transfer limitation of oxygen-dependent enzymatic processes.

11.
Biochim Biophys Acta Bioenerg ; 1863(1): 148507, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34728155

RESUMEN

Photosynthetic electron transfer comprises a series of light-induced redox reactions catalysed by multiprotein machinery in the thylakoid. These protein complexes possess cofactors susceptible to redox modifications by reactive small molecules. The gaseous radical nitric oxide (NO), a key signalling molecule in green algae and plants, has earlier been shown to bind to Photosystem (PS) II and obstruct electron transfer in plants. The effects of NO on cyanobacterial bioenergetics however, have long remained obscure. In this study, we exposed the model cyanobacterium Synechocystis sp. PCC 6803 to NO under anoxic conditions and followed changes in whole-cell fluorescence and oxidoreduction of P700 in vivo. Our results demonstrate that NO blocks photosynthetic electron transfer in cells by repressing PSII, PSI, and likely the NDH dehydrogenase-like complex 1 (NDH-1). We propose that iron­sulfur clusters of NDH-1 complex may be affected by NO to such an extent that ferredoxin-derived electron injection to the plastoquinone pool, and thus cyclic electron transfer, may be inhibited. These findings reveal the profound effects of NO on Synechocystis cells and demonstrate the importance of controlled NO homeostasis in cyanobacteria.


Asunto(s)
Complejo de Proteína del Fotosistema II , Transporte de Electrón , Synechocystis
12.
Physiol Plant ; 173(1): 305-320, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34145600

RESUMEN

Photosynthetic cyanobacteria are exposed to rapid changes in light intensity in their natural habitats, as well as in photobioreactors. To understand the effects of such fluctuations on Synechocystis sp. PCC 6803, the global proteome of cells grown under a fluctuating light condition (low background light interrupted with high light pulses) was compared to the proteome of cells grown under constant light with concomitant acclimation of cells to low CO2 level. The untargeted global proteome of Synechocystis sp. PCC 6803 was analyzed by data-dependent acquisition (DDA), which relies on the high mass accuracy and sensitivity of orbitrap-based tandem mass spectrometry. In addition, a targeted selected reaction monitoring (SRM) approach was applied to monitor the proteomic changes in a strain lacking flavodiiron proteins Flv1 and Flv3. This strain is characterized by impaired growth and photosynthetic activity under fluctuating light. An obvious reprogramming of cell metabolism was observed in this study and was compared to a previous transcriptional analysis performed under the same fluctuating light regime. Cyanobacterial responses to fluctuating light correlated at mRNA and protein levels to some extent, but discrepancies indicate that several proteins are post-transcriptionally regulated (affecting observed protein abundances). The data suggest that Synechocystis sp. PCC 6803 maintain higher nitrogen assimilation, serving as an electron valve, for long-term acclimation to fluctuating light upon CO2 step-down. Although Flv1 and Flv3 are known to be crucial for the cells at the onset of illumination, the flavodiiron proteins, as well as components of carbon assimilation pathways, were less abundant under fluctuating light.


Asunto(s)
Synechocystis , Proteínas Bacterianas/metabolismo , Dióxido de Carbono , Luz , Fotosíntesis , Proteómica , Synechocystis/metabolismo
13.
Physiol Plant ; 173(2): 555-567, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33860946

RESUMEN

Photosynthetic production of molecular hydrogen (H2 ) by cyanobacteria and green algae is a potential source of renewable energy. These organisms are capable of water biophotolysis by taking advantage of photosynthetic apparatus that links water oxidation at Photosystem II and reduction of protons to H2 downstream of Photosystem I. Although the process has a theoretical potential to displace fossil fuels, photosynthetic H2 production in its current state is not yet efficient enough for industrial applications due to a number of physiological, biochemical, and engineering barriers. This article presents a short overview of the metabolic pathways and enzymes involved in H2 photoproduction in cyanobacteria and green algae and our present understanding of the mechanisms of this process. We also summarize recent advances in engineering photosynthetic cell factories capable of overcoming the major barriers to efficient and sustainable H2 production.


Asunto(s)
Chlorophyta , Hidrogenasas , Chlorophyta/genética , Chlorophyta/metabolismo , Hidrógeno , Hidrogenasas/genética , Hidrogenasas/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo
14.
Physiol Plant ; 173(2): 568-578, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33860948

RESUMEN

The growth of the world's population increases the demand for fresh water, food, energy, and technology, which in turn leads to increasing amount of wastewater, produced both by domestic and industrial sources. These different wastewaters contain a wide variety of organic and inorganic compounds which can cause tremendous environmental problems if released untreated. Traditional treatment systems are usually expensive, energy demanding and are often still incapable of solving all challenges presented by the produced wastewaters. Microalgae are promising candidates for wastewater reclamation as they are capable of reducing the amount of nitrogen and phosphate as well as other toxic compounds including heavy metals or pharmaceuticals. Compared to the traditional systems, photosynthetic microalgae require less energy input since they use sunlight as their energy source, and at the same time lower the carbon footprint of the overall reclamation process. This mini-review focuses on recent advances in wastewater reclamation using microalgae. The most common microalgal strains used for this purpose are described as well as the challenges of using wastewater from different origins. We also describe the impact of climate with a particular focus on a Nordic climate.


Asunto(s)
Microalgas , Purificación del Agua , Biomasa , Nitrógeno , Aguas Residuales
15.
Physiol Plant ; 173(2): 591-602, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33928648

RESUMEN

The ability to capture and convert sunlight, water and nutrients into useful compounds make photosynthetic microbes ideal candidates for the bio-industrial factories of the future. However, the suitability of isolates from temperate regions to grow under Nordic conditions is questionable. In this work, we explore the chemotaxonomy of Nordic strains of cyanobacteria and one green alga and evaluate their potential as raw materials for the production of lipid-based bio-industrial compounds. Thin-layer chromatography was used to identify the presence of triacylglycerol, which were detected in the majority of strains. Fatty acid methyl ester profiles were analysed to determine the suitability of strains for the production of biodiesel or the production of polyunsaturated fatty acids for the nutraceutical industry. The Nordic Synechococcus strains were unique in demonstrating fatty acid profiles comprised mostly C14:0, C16:0 and C16:1 and lacking polyunsaturated fatty acids. These properties translated to superior predicted biodiesel qualities, including cetane number, cold filter plugging point and oxidative stability compared to the other evaluated strains. Polyunsaturated fatty acids were detected at high levels (38-53%), with Calothrix sp. 336/3 being abundant in two essential fatty acids, linoleic and alpha-linolenic acid (21 and 17%, respectively). Gamma-linoleic acid was the predominant polyunsaturated fatty acid for the remaining strains (13-21%). In addition to assessing the potential of Nordic strains for bio-industrial production, this work also discusses issues such as taxonomy and predictive modelling, which can affect the identification of prospective high-performing strains.


Asunto(s)
Cianobacterias , Microalgas , Biocombustibles , Biomasa , Ácidos Grasos , Lípidos , Estudios Prospectivos , Triglicéridos
16.
Physiol Plant ; 173(2): 579-590, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33864400

RESUMEN

Ethylene is a volatile hydrocarbon with a massive global market in the plastic industry. The ethylene now used for commercial applications is produced exclusively from nonrenewable petroleum sources, while competitive biotechnological production systems do not yet exist. This review focuses on the currently developed photoautotrophic bioproduction strategies that enable direct solar-driven conversion of CO2 into ethylene, based on the use of genetically engineered photosynthetic cyanobacteria expressing heterologous ethylene forming enzyme (EFE) from Pseudomonas syringae. The emphasis is on the different engineering strategies to express EFE and to direct the cellular carbon flux towards the primary metabolite 2-oxoglutarate, highlighting associated metabolic constraints, and technical considerations on cultivation strategies and conditional parameters. While the research field has progressed towards more robust strains with better production profiles, and deeper understanding of the associated metabolic limitations, it is clear that there is room for significant improvement to reach industrial relevance. At the same time, existing information and the development of synthetic biology tools for engineering cyanobacteria open new possibilities for improving the prospects for the sustainable production of renewable ethylene.


Asunto(s)
Cianobacterias , Biotecnología , Cianobacterias/genética , Etilenos , Ingeniería Metabólica , Fotosíntesis , Pseudomonas syringae
17.
Physiol Plant ; 173(2): 514-525, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33764547

RESUMEN

Cyanobacteria and microalgae perform oxygenic photosynthesis where light energy is harnessed to split water into oxygen and protons. This process releases electrons that are used by the photosynthetic electron transport chain to form reducing equivalents that provide energy for the cell metabolism. Constant changes in environmental conditions, such as light availability, temperature, and access to nutrients, create the need to balance the photochemical reactions and the metabolic demands of the cell. Thus, cyanobacteria and microalgae evolved several auxiliary electron transport (AET) pathways to disperse the potentially harmful over-supply of absorbed energy. AET pathways are comprised of electron sinks, e.g. flavodiiron proteins (FDPs) or other terminal oxidases, and pathways that recycle electrons around photosystem I, like NADPH-dehydrogenase-like complexes (NDH) or the ferredoxin-plastoquinone reductase (FQR). Under controlled conditions the need for these AET pathways is decreased and AET can even be energetically wasteful. Therefore, redirecting photosynthetic reducing equivalents to biotechnologically useful reactions, catalyzed by i.e. innate hydrogenases or heterologous enzymes, offers novel possibilities to apply photosynthesis research.


Asunto(s)
Cianobacterias , Microalgas , Cianobacterias/metabolismo , Transporte de Electrón , Microalgas/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo
18.
Physiol Plant ; 173(2): 507-513, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33709388

RESUMEN

NordAqua is a multidisciplinary Nordic Center of Excellence funded by NordForsk Bioeconomy program (2017-2022). The research center promotes Blue Bioeconomy and endeavours to reform the use of natural resources in a environmentally sustainable way. In this short communication, we summarize particular outcomes of the consortium. The key research progress of NordAqua includes (1) improving of photosynthetisis, (2) developing novel photosynthetic cell factories that function in a "solar-driven direct CO2 capture to target bioproducts" mode, (3) promoting the diversity of Nordic cyanobacteria and algae as an abundant and resilient alternative for less sustainable forest biomass and for innovative production of biochemicals, and (4) improving the bio-based wastewater purification and nutrient recycling technologies to provide new tools for integrative circular economy platforms.


Asunto(s)
Fotosíntesis , Biomasa
19.
ACS Appl Bio Mater ; 4(1): 483-493, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35014302

RESUMEN

Electrically conductive composite nanofibers were fabricated using poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT-PSS) and cellulose nanofibrils (CNFs) via the electrospinning technique. Poly(ethylene oxide) (PEO) was used to assist the electrospinning process, and poly(ethylene glycol) diglycidyl ether was used to induce chemical cross-linking, enabling stability of the formed fibrous mats in water. The experimental parameters regarding the electrospinning polymer dispersion and electrospinning process were carefully studied to achieve a reproducible method to obtain bead-free nanofibrous mats with high stability after water contact, with an electrical conductivity of 13 ± 5 S m-1, thus making them suitable for bioelectrochemical applications. The morphology of the electrospun nanofibers was characterized by scanning electron microscopy, and the C/S ratio was determined with energy dispersive X-ray analysis. Cyclic voltammetric studies showed that the PEDOT-PSS/CNF/PEO composite fibers exhibited high electroactivity and high stability in water for at least two months. By infrared spectroscopy, the slightly modified fiber morphology after water contact was demonstrated to be due to dissolution of some part of the PEO in the fiber structure. The biocompatibility of the PEDOT-PSS/CNF/PEO composite fibers when used as an electroconductive substrate to immobilize microalgae and cyanobacteria in a photosynthetic bioelectrochemical cell was also demonstrated.


Asunto(s)
Materiales Biocompatibles/química , Celulosa/química , Nanofibras/química , Polietilenglicoles/química , Poliestirenos/química , Tiofenos/química , Materiales Biocompatibles/farmacología , Chlamydomonas/efectos de los fármacos , Chlamydomonas/metabolismo , Cianobacterias/efectos de los fármacos , Cianobacterias/metabolismo , Conductividad Eléctrica , Nanofibras/toxicidad , Agua/química
20.
Adv Mater ; 33(3): e2004349, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33289188

RESUMEN

In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.


Asunto(s)
Biomimética/métodos , Celulosa/química , Nanoestructuras , Nanotecnología/métodos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...