Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancer Immunol Res ; 9(11): 1283-1297, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34426457

RESUMEN

Suppressive myeloid cells inhibit antitumor immunity by preventing T-cell responses. Immunoglobulin-like transcript 3 (ILT3; also known as LILRB4) is highly expressed on tumor-associated myeloid cells and promotes their suppressive phenotype. However, the ligand that engages ILT3 within the tumor microenvironment and renders tumor-associated myeloid cells suppressive is unknown. Using a screening approach, we identified fibronectin as a functional ligand for ILT3. The interaction of fibronectin with ILT3 polarized myeloid cells toward a suppressive state, and these effects were reversed with an ILT3-specific antibody that blocked the interaction of ILT3 with fibronectin. Furthermore, ex vivo treatment of human tumor explants with anti-ILT3 reprogrammed tumor-associated myeloid cells toward a stimulatory phenotype. Thus, the ILT3-fibronectin interaction represents a "stromal checkpoint" through which the extracellular matrix actively suppresses myeloid cells. By blocking this interaction, tumor-associated myeloid cells may acquire a stimulatory phenotype, potentially resulting in increased antitumor T-cell responses.


Asunto(s)
Fibronectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Receptores Inmunológicos/metabolismo , Diferenciación Celular , Línea Celular , Humanos
2.
Cell Rep Med ; 1(5): 100058, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-33205067

RESUMEN

The cellular origin of sporadic pancreatic neuroendocrine tumors (PNETs) is obscure. Hormone expression suggests that these tumors arise from glucagon-producing alpha cells or insulin-producing ß cells, but instability in hormone expression prevents linage determination. We utilize loss of hepatic glucagon receptor (GCGR) signaling to drive alpha cell hyperproliferation and tumor formation to identify a cell of origin and dissect mechanisms that drive progression. Using a combination of genetically engineered Gcgr knockout mice and GCGR-inhibiting antibodies, we show that elevated plasma amino acids drive the appearance of a proliferative population of SLC38A5+ embryonic progenitor-like alpha cells in mice. Further, we characterize tumors from patients with rare bi-allelic germline GCGR loss-of-function variants and find prominent tumor-cell-associated expression of the SLC38A5 paralog SLC7A8 as well as markers of active mTOR signaling. Thus, progenitor cells arise from adult alpha cells in response to metabolic signals and, when inductive signals are chronically present, drive tumor initiation.


Asunto(s)
Aminoácidos/sangre , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Tumores Neuroendocrinos/sangre , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/patología , Adenoma de Células de los Islotes Pancreáticos/metabolismo , Adenoma de Células de los Islotes Pancreáticos/patología , Animales , Glucemia/metabolismo , Femenino , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Tumores Neuroendocrinos/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores de Glucagón/metabolismo , Transducción de Señal/fisiología
3.
Nat Med ; 26(8): 1264-1270, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32661391

RESUMEN

Cancer cachexia is a highly prevalent condition associated with poor quality of life and reduced survival1. Tumor-induced perturbations in the endocrine, immune and nervous systems drive anorexia and catabolic changes in adipose tissue and skeletal muscle, hallmarks of cancer cachexia2-4. However, the molecular mechanisms driving cachexia remain poorly defined, and there are currently no approved drugs for the condition. Elevation in circulating growth differentiation factor 15 (GDF15) correlates with cachexia and reduced survival in patients with cancer5-8, and a GDNF family receptor alpha like (GFRAL)-Ret proto-oncogene (RET) signaling complex in brainstem neurons that mediates GDF15-induced weight loss in mice has recently been described9-12. Here we report a therapeutic antagonistic monoclonal antibody, 3P10, that targets GFRAL and inhibits RET signaling by preventing the GDF15-driven interaction of RET with GFRAL on the cell surface. Treatment with 3P10 reverses excessive lipid oxidation in tumor-bearing mice and prevents cancer cachexia, even under calorie-restricted conditions. Mechanistically, activation of the GFRAL-RET pathway induces expression of genes involved in lipid metabolism in adipose tissues, and both peripheral chemical sympathectomy and loss of adipose triglyceride lipase protect mice from GDF15-induced weight loss. These data uncover a peripheral sympathetic axis by which GDF15 elicits a lipolytic response in adipose tissue independently of anorexia, leading to reduced adipose and muscle mass and function in tumor-bearing mice.


Asunto(s)
Caquexia/tratamiento farmacológico , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor 15 de Diferenciación de Crecimiento/genética , Complejos Multiproteicos/ultraestructura , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-ret/genética , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Anticuerpos Monoclonales , Caquexia/complicaciones , Caquexia/genética , Caquexia/inmunología , Línea Celular Tumoral , Cristalografía por Rayos X , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/ultraestructura , Factor 15 de Diferenciación de Crecimiento/ultraestructura , Xenoinjertos , Humanos , Peroxidación de Lípido , Ratones , Complejos Multiproteicos/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/inmunología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-ret/ultraestructura , Transducción de Señal , Pérdida de Peso
5.
Nature ; 578(7795): 444-448, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31875646

RESUMEN

Metformin, the world's most prescribed anti-diabetic drug, is also effective in preventing type 2 diabetes in people at high risk1,2. More than 60% of this effect is attributable to the ability of metformin to lower body weight in a sustained manner3. The molecular mechanisms by which metformin lowers body weight are unknown. Here we show-in two independent randomized controlled clinical trials-that metformin increases circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15), which has been shown to reduce food intake and lower body weight through a brain-stem-restricted receptor. In wild-type mice, oral metformin increased circulating GDF15, with GDF15 expression increasing predominantly in the distal intestine and the kidney. Metformin prevented weight gain in response to a high-fat diet in wild-type mice but not in mice lacking GDF15 or its receptor GDNF family receptor α-like (GFRAL). In obese mice on a high-fat diet, the effects of metformin to reduce body weight were reversed by a GFRAL-antagonist antibody. Metformin had effects on both energy intake and energy expenditure that were dependent on GDF15, but retained its ability to lower circulating glucose levels in the absence of GDF15 activity. In summary, metformin elevates circulating levels of GDF15, which is necessary to obtain its beneficial effects on energy balance and body weight, major contributors to its action as a chemopreventive agent.


Asunto(s)
Peso Corporal/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Metformina/farmacología , Administración Oral , Adulto , Anciano , Animales , Glucemia/análisis , Glucemia/metabolismo , Dieta Alta en Grasa , Método Doble Ciego , Ingestión de Energía/efectos de los fármacos , Enterocitos/citología , Enterocitos/efectos de los fármacos , Femenino , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/antagonistas & inhibidores , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/deficiencia , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/deficiencia , Factor 15 de Diferenciación de Crecimiento/genética , Homeostasis/efectos de los fármacos , Humanos , Intestinos/citología , Intestinos/efectos de los fármacos , Masculino , Metformina/administración & dosificación , Ratones , Ratones Obesos , Persona de Mediana Edad , Pérdida de Peso/efectos de los fármacos
7.
Nature ; 550(7675): 255-259, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-28953886

RESUMEN

Under homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand. Recent studies have identified brain areas outside the hypothalamus that are activated under these 'non-homeostatic' conditions, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive. Here we identify glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as a brainstem-restricted receptor for growth and differentiation factor 15 (GDF15). GDF15 regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses; we show that Gfral knockout mice are hyperphagic under stressed conditions and are resistant to chemotherapy-induced anorexia and body weight loss. GDF15 activates GFRAL-expressing neurons localized exclusively in the area postrema and nucleus tractus solitarius of the mouse brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which constitute part of the 'emergency circuit' that shapes feeding responses to stressful conditions. GDF15 levels increase in response to tissue stress and injury, and elevated levels are associated with body weight loss in numerous chronic human diseases. By isolating GFRAL as the receptor for GDF15-induced anorexia and weight loss, we identify a mechanistic basis for the non-homeostatic regulation of neural circuitry by a peripheral signal associated with tissue damage and stress. These findings provide opportunities to develop therapeutic agents for the treatment of disorders with altered energy demand.


Asunto(s)
Peso Corporal/fisiología , Tronco Encefálico/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Animales , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Núcleo Amigdalino Central/citología , Núcleo Amigdalino Central/fisiología , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Conducta Alimentaria , Femenino , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/deficiencia , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/farmacología , Homeostasis , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/fisiología , Estrés Psicológico
8.
J Invest Dermatol ; 136(2): 436-443, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26967477

RESUMEN

SLURP1, a member of the lymphocyte antigen 6 protein family, is secreted by suprabasal keratinocytes. Mutations in SLURP1 cause a palmoplantar keratoderma (PPK) known as mal de Meleda. SLURP2, another secreted lymphocyte antigen 6 protein, is encoded by a gene located ?20 kb downstream from SLURP1. SLURP2 is produced by suprabasal keratinocytes. To investigate the importance of SLURP2, we first examined Slurp2 knockout mice in which exon 2-3 sequences had been replaced with lacZ and neo cassettes. Slurp2(-/-) mice exhibited hyperkeratosis on the volar surface of the paws (i.e., palmoplantar keratoderma), increased keratinocyte proliferation, and an accumulation of lipid droplets in the stratum corneum. They also exhibited reduced body weight and hind limb clasping. These phenotypes are similar to those of Slurp1(-/-) mice. To solidify a link between Slurp2 deficiency and palmoplantar keratoderma and to be confident that the disease phenotypes in Slurp2(-/-) mice were not secondary to the effects of the lacZ and neo cassettes on Slurp1 expression, we created a new line of Slurp2 knockout mice (Slurp2X(-/-)) in which Slurp2 was inactivated with a simple nonsense mutation. Slurp2X(-/-) mice exhibited the same disease phenotypes. Thus, Slurp2 deficiency and Slurp1 deficiencies cause the same disease phenotypes.


Asunto(s)
Antígenos Ly/genética , Codón sin Sentido , Proteínas Ligadas a GPI/genética , Regulación de la Expresión Génica , Queratodermia Palmoplantar/genética , Activador de Plasminógeno de Tipo Uroquinasa/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/deficiencia , Inmunohistoquímica , Queratinocitos/citología , Queratinocitos/metabolismo , Queratodermia Palmoplantar/patología , Ratones , Ratones Noqueados , Fenotipo , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
9.
Cell Rep ; 12(3): 495-510, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26166562

RESUMEN

Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and ß-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into ß-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.


Asunto(s)
Aminoácidos/metabolismo , Glucagón/metabolismo , Hígado/citología , Hígado/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proliferación Celular , Metabolismo , Ratones , Transducción de Señal
10.
J Invest Dermatol ; 134(6): 1589-1598, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24499735

RESUMEN

Mutations in SLURP1 cause mal de Meleda, a rare palmoplantar keratoderma (PPK). SLURP1 is a secreted protein that is expressed highly in keratinocytes but has also been identified elsewhere (e.g., spinal cord neurons). Here, we examined Slurp1-deficient mice (Slurp1(-/-)) created by replacing exon 2 with ß-gal and neo cassettes. Slurp1(-/-) mice developed severe PPK characterized by increased keratinocyte proliferation, an accumulation of lipid droplets in the stratum corneum, and a water barrier defect. In addition, Slurp1(-/-) mice exhibited reduced adiposity, protection from obesity on a high-fat diet, low plasma lipid levels, and a neuromuscular abnormality (hind-limb clasping). Initially, it was unclear whether the metabolic and neuromuscular phenotypes were due to Slurp1 deficiency, because we found that the targeted Slurp1 mutation reduced the expression of several neighboring genes (e.g., Slurp2, Lypd2). We therefore created a new line of knockout mice (Slurp1X(-/-) mice) with a simple nonsense mutation in exon 2. The Slurp1X mutation did not reduce the expression of adjacent genes, but Slurp1X(-/-) mice exhibited all of the phenotypes observed in the original line of knockout mice. Thus, Slurp1 deficiency in mice elicits metabolic and neuromuscular abnormalities in addition to PPK.


Asunto(s)
Antígenos Ly/metabolismo , Queratodermia Palmoplantar/metabolismo , Queratodermia Palmoplantar/fisiopatología , Enfermedades Neuromusculares/fisiopatología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Alelos , Animales , Antígenos Ly/genética , Peso Corporal , Codón sin Sentido , Epidermis/metabolismo , Epidermis/patología , Exones , Femenino , Genotipo , Lípidos/sangre , Masculino , Ratones , Ratones Noqueados , Fenotipo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Agua/metabolismo
11.
J Biol Chem ; 288(50): 36168-78, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24189067

RESUMEN

Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Receptores de Glucagón/química , Receptores de Glucagón/inmunología , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Espacio Extracelular/metabolismo , Humanos , Masculino , Ratones , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Receptores de Glucagón/antagonistas & inhibidores
12.
PLoS One ; 8(6): e66502, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776679

RESUMEN

The epithelial-to-mesenchymal transition (EMT) is a highly conserved physiological program involved in development and tissue repair; however, its aberrant activation has been implicated in accelerating the progression of a variety of cancers. In breast cancer, the microRNAs (miRNAs) miR-221 and miR-222 (miR-221/222) are differentially expressed in the clinically more aggressive basal-like subtype compared to luminal subtype of breast cancer and upregulation of miR-221/222 induces the EMT by targeting the 3' untranslated region (3'UTR) of the GATA family transcriptional repressor TRPS1 (tricho-rhino-phalangeal syndrome type 1). The complete mechanism through which miR-221/222 promotes the EMT, however, is not fully understood. We identified adiponectin receptor 1 (ADIPOR1), a receptor for the adipocytokine adiponectin, as a direct target of miR-221/222. ADIPOR1 is expressed at higher levels in the luminal compared to the basal-like subtype of breast cancer cell lines, which can be reduced by miR-221/222 targeting of its 3'UTR. In addition, miR-221/222 were negatively correlated with ADIPOR1 expression across breast cancer cell lines and tumors. ADIPOR1 depletion by siRNA in MCF10A cells induced the EMT and increased cell invasion. Depletion of ADIPOR1 by siRNA induced activation of the canonical nuclear factor-kappaB (NF-κB) and subsequent phosphorylation of signal transducer and activator of transcription 3 (STAT3) in an interleukin 6 (IL6)-dependent manner. Finally, overexpression of ADIPOR1 in the basal-like cell line, MDA-MB-231, attenuated cell invasion and promoted the mesenchymal-to-epithelial transition (MET). We conclude that ADIPOR1 negatively regulates EMT in breast cancer and provides an additional node by which miR-221/222 induces the EMT. These results suggest that ADIPOR1 may play an important role in breast cancer progression and metastasis, and could potentially offer an alternative therapeutic strategy for basal-like breast cancer patients.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal/fisiología , MicroARNs/metabolismo , Receptores de Adiponectina/metabolismo , Western Blotting , Neoplasias de la Mama/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Adiponectina/genética
13.
Proc Natl Acad Sci U S A ; 109(36): 14393-8, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22908259

RESUMEN

Members of the class B family of G protein-coupled receptors (GPCRs) bind peptide hormones and have causal roles in many diseases, ranging from diabetes and osteoporosis to anxiety. Although peptide, small-molecule, and antibody inhibitors of these GPCRs have been identified, structure-based descriptions of receptor antagonism are scarce. Here we report the mechanisms of glucagon receptor inhibition by blocking antibodies targeting the receptor's extracellular domain (ECD). These studies uncovered a role for the ECD as an intrinsic negative regulator of receptor activity. The crystal structure of the ECD in complex with the Fab fragment of one antibody, mAb1, reveals that this antibody inhibits glucagon receptor by occluding a surface extending across the entire hormone-binding cleft. A second antibody, mAb23, blocks glucagon binding and inhibits basal receptor activity, indicating that it is an inverse agonist and that the ECD can negatively regulate receptor activity independent of ligand binding. Biochemical analyses of receptor mutants in the context of a high-resolution ECD structure show that this previously unrecognized inhibitory activity of the ECD involves an interaction with the third extracellular loop of the receptor and suggest that glucagon-mediated structural changes in the ECD accompany receptor activation. These studies have implications for the design of drugs to treat class B GPCR-related diseases, including the potential for developing novel allosteric regulators that target the ECDs of these receptors.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Receptores de Glucagón/química , Receptores de Glucagón/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Western Blotting , Línea Celular , Cromatografía de Afinidad , Cristalografía , Ensayo de Inmunoadsorción Enzimática , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Estructura Terciaria de Proteína/genética , Receptores de Glucagón/antagonistas & inhibidores
14.
Proc Natl Acad Sci U S A ; 106(7): 2188-93, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19179292

RESUMEN

Mitochondrial biogenesis occurs in response to increased cellular ATP demand. The mitochondrial electron transport chain requires molecular oxygen to produce ATP. Thus, increased ATP generation after mitochondrial biogenesis results in increased oxygen demand that must be matched by a corresponding increase in oxygen supply. We found that overexpression of peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), which increases mitochondrial biogenesis in primary skeletal muscle cells, leads to increased expression of a cohort of genes known to be regulated by the dimeric hypoxia-inducible factor (HIF), a master regulator of the adaptive response to hypoxia. PGC-1alpha-dependent induction of HIF target genes under physiologic oxygen concentrations is not through transcriptional coactivation of HIF or up-regulation of HIF-1alpha mRNA but through HIF-1alpha protein stabilization. It occurs because of intracellular hypoxia as a result of increased oxygen consumption after mitochondrial biogenesis. Thus, we propose that at physiologic oxygen concentrations, PGC-1alpha is coupled to HIF signaling through the regulation of intracellular oxygen availability, allowing cells and tissues to match increased oxygen demand after mitochondrial biogenesis with increased oxygen supply.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Humanos , Ratones , Músculo Esquelético/citología , Consumo de Oxígeno , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas
15.
Eur J Cell Biol ; 86(7): 393-403, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17544543

RESUMEN

Maintenance of oxygen homeostasis is a key requirement to ensure normal mammalian cell growth and differentiation. Hypoxia arises when oxygen demand exceeds supply, and is a feature of multiple human diseases including stroke, cancer and renal fibrosis. We have investigated the effect of hypoxia on kidney cells, and observed that insulin-induced cell viability is increased in hypoxia. We have characterized the role of protein kinase B (PKB/Akt) in these cells as a potential mediator of this effect. PKB/Akt activity was increased by low oxygen concentrations in kidney cells, and insulin-stimulated activation of PKB/Akt was stronger, more rapid and more sustained in hypoxia. Reduction of HIF1alpha levels using antimycin-A or siRNA targeting HIF1alpha did not affect PKB/Akt activation in hypoxia. Pharmacologic stabilization of HIF1alpha independent of hypoxia did not increase insulin-stimulated PKB/Akt activation. Although increased insulin-stimulated cell viability was observed in hypoxia, no differences in the degree of insulin-stimulated glucose uptake were observed in L6 muscle cells in hypoxia compared to normoxia. Thus, PKB/Akt may regulate specific cellular responses to growth factors such as insulin under adverse conditions such as hypoxia.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Insulina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antimicina A/farmacología , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Humanos , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Tioléster Hidrolasas , Factores de Tiempo
16.
Biochem J ; 367(Pt 2): 505-10, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12097138

RESUMEN

Histone 2A increases glucose-6-phosphatase activity in liver microsomes. The effect has been attributed either to the conformational change of the enzyme, or to the permeabilization of microsomal membrane that allows the free access of substrate to the intraluminal glucose-6-phosphatase catalytic site. The aim of the present study was the critical reinvestigation of the mechanism of action of histone 2A. It has been found that the dose-effect curve of histone 2A is different from that of detergents and resembles that of the pore-forming alamethicin. Inhibitory effects of EGTA on glucose-6-phosphatase activity previously reported in histone 2A-treated microsomes have been also found in alamethicin-permeabilized vesicles. The effect of EGTA cannot therefore simply be an antagonization of the effect of histone 2A. Histone 2A stimulates the activity of another latent microsomal enzyme, UDP-glucuronosyltransferase, which has an intraluminal catalytic site. Finally, histone 2A renders microsomal vesicles permeable to non-permeant compounds. Taken together, the results demonstrate that histone 2A stimulates glucose-6-phosphatase activity by permeabilizing the microsomal membrane.


Asunto(s)
Glucosa-6-Fosfatasa/metabolismo , Histonas/metabolismo , Microsomas Hepáticos/metabolismo , Alameticina/farmacología , Animales , Carbamatos/farmacología , Ácido Egtácico/farmacología , Glucosa-6-Fosfatasa/efectos de los fármacos , Glucósidos/farmacología , Glucuronosiltransferasa/efectos de los fármacos , Glucuronosiltransferasa/metabolismo , Histonas/farmacología , Membranas Intracelulares , Microsomas Hepáticos/efectos de los fármacos , Permeabilidad , Polietilenglicoles/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...