Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 262: 124680, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37235957

RESUMEN

Plant viruses can affect micro- and macro-nutrients homeostasis in woody plants, with fluctuation in the concentration of some elements at the leaf level due to the pathogen activity and/or the plant physiological response to the infection.Leaves of Fraxinus ornus L. (flowering ash) were sampled for three consecutive years in the city of Hamburg (Germany), from both trees showing the typical symptoms of the ash shoestring associated virus infection (ASaV+) and healthy trees (ASaV-). Such leaves were analyzed by µ-XRF, using both laboratory and synchrotron X-ray sources, and large differences between symptomatic and not symptomatic leaves were observed: ASaV+ samples showed uneven element distribution and regions of the lamina with severe depletions of P, S, and Ca. Differently, K appeared more concentrated. Thus, 139 leaflets sampled from various healthy and infected ash trees over the three-year period were analyzed for K and Ca concentration with a portable XRF instrument. We found that the K:Ca concentration ratio was always significantly higher in ASaV+ samples, and this trend was verified for all the samplings over the tree years. We conclude that the K:Ca ratio parameter has potential in the frame of trendsetting diagnostics and could be used, together with visual symptoms, for a rapid, non-destructive, on-site and cheap indirect ASaV detection.


Asunto(s)
Fraxinus , Virosis , Plantas , Árboles , Hojas de la Planta
2.
Food Chem ; 401: 134124, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126374

RESUMEN

The increased costumers' request of safe and high-quality food products makes food traceability a priority for frauds identification and quality certification. Elemental profiling is one of the strategies used for food traceability, and TXRF spectroscopy is widely used in food analysis even if its potentialities have not been fully investigated. In this work, a new method for food traceability using directly TXRF spectra coupled with multivariate analyses, was tested. Twenty-four different beans' genotypes (Phaseolus vulgaris L.) grown onto two different sites have been studied. After the development of the method for beans' analysis, TXRF spectra were collected and processed with PCA combined with SNV and GLSW filter obtaining a perfect clustering of the seeds according to their geographical origin. Finally, using PLS-DA, beans were correctly classified demonstrating that TXRF spectra can be successfully used as fingerprint for food/seed traceability and that elemental quantification procedure is not necessary to this aim.


Asunto(s)
Phaseolus , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Phaseolus/química , Semillas/química
3.
Environ Sci Pollut Res Int ; 30(3): 6358-6372, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35997877

RESUMEN

Fire events can modify the distribution and speciation of potentially toxic elements (PTEs) in soil, especially if they are associated to organic matter (OM). In fact, OM can undergo substantial structural modifications at high temperatures, up to the complete mineralization. The present study aims to investigate the changes of PTEs' bioavailability to durum wheat (Triticum durum Desf.) plants after simulating fire events (up to 300 °C and 500 °C) in an agricultural soil polluted by Cr, Zn, Cu, and Pb. The PTEs' uptake and allocation in plant tissues were assessed using the RHIZOtest system. After the fire simulations, no evident risk of accumulation and translocation in plants was observed for Zn, Pb, and Cu. Conversely, a high accumulation in roots and a significant translocation to shoots were observed for Cr, which reached concentrations of 829 mg kg-1 in roots and 52 mg kg-1 in shoots at 500 °C. Additional experimental evidence suggested that Cr was taken up by plants grown on heated soils as Cr(VI). Once acquired by roots, only a small part of Cr (up to 6%) was translocated to shoots where it was likely present as mobile forms, as evidenced by micro X-ray fluorescence (µ-XRF) analyses. Overall, the results obtained provide evidence that the high temperatures occurring during fire events can increase the mobility and bioavailability of certain PTEs transforming apparently safe environments into potentially dangerous sources of pollution. These processes can ultimately affect the human health through the food chain transfer of PTEs or their migration into surface water and groundwater.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Metales Pesados/análisis , Triticum , Disponibilidad Biológica , Plomo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente/métodos , Medición de Riesgo
4.
Foods ; 11(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36230108

RESUMEN

Globe artichoke roots represent an alternative and sustainable source for inulin extraction and are well-noted for their technological and functional properties. Therefore, the aim of our study was to exploit inulin with high degree of polymerization as a replacement of durum wheat semolina for the production of functional fresh pasta. The effect of increased level of substitution (5, 10, 15%) on cooking, structural, sensory, and nutritional properties were evaluated and compared with a control sample consisting exclusively of durum wheat semolina. Inulin addition caused changes to internal structure as evaluated by scanning electron microscopy. The enriched samples showed a lower swelling index, an increasing cooking time, and values of cooking loss (2.37-3.62%), mainly due to the leaching of inulin into the cooking water. Cooked and raw enriched pasta was significantly darker and firmer than the control, but the sensory attributes were not negatively affected, especially at 5 and 10% of substitution levels. The increase of dietary fiber content in enriched pasta (3.44-12.41 g/100 g) resulted in a significant reduction of glycaemic index (pGI) and starch hydrolysis (HI). After gastrointestinal digestion, inulin-enriched pasta increased prebiotic growth able to significantly reduce E. coli cell density.

5.
Nano Lett ; 22(11): 4437-4444, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609011

RESUMEN

CsPbBr3 nanocrystals (NCs) passivated by conventional lipophilic capping ligands suffer from colloidal and optical instability under ambient conditions, commonly due to the surface rearrangements induced by the polar solvents used for the NC purification steps. To avoid onerous postsynthetic approaches, ascertained as the only viable stability-improvement strategy, the surface passivation paradigms of as-prepared CsPbBr3 NCs should be revisited. In this work, the addition of an extra halide source (8-bromooctanoic acid) to the typical CsPbBr3 synthesis precursors and surfactants leads to the in situ formation of a zwitterionic ligand already before cesium injection. As a result, CsPbBr3 NCs become insoluble in nonpolar hexane, with which they can be washed and purified, and form stable colloidal solutions in a relatively polar medium (dichloromethane), even when longly exposed to ambient conditions. The improved NC stability stems from the effective bidentate adsorption of the zwitterionic ligand on the perovskite surfaces, as supported by theoretical investigations. Furthermore, the bidentate functionalization of the zwitterionic ligand enables the obtainment of blue-emitting perovskite NCs with high PLQYs by UV-irradiation in dichloromethane, functioning as the photoinduced chlorine source.

6.
J Hazard Mater ; 436: 129117, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35594675

RESUMEN

Controlled or accidental fires can impact agricultural soils amended with composted organic materials since high temperatures cause fast organic matter (OM) mineralization and soil properties modifications. During these events, potentially toxic elements (PTEs) associated with OM can be released and change their distribution and speciation thus becoming a threat to the environment and to crops. In this study, we investigated the changes of distribution and speciation of chromium in soils long-term amended with compost obtained from tannery sludges, after simulating fires of different intensity (300, 400 and 500 °C) likely to occur on agricultural soils. A combination of conventional soil chemical analyses and bulk and (sub)micro X-ray analyses allowed the observation of the formation of hexavalent chromium and changes of chromium speciation. Specifically, a strong decrease of Cr-OM associations was found with increasing temperature in favour of Cr-iron (hydr)oxides interactions and CaCrO4 formation. These data provide first evidence that fires can transform OM-stabilized Cr into more mobile, available and toxic Cr-forms potentially accessible for plant uptake, thus posing a risk for the food chain and the environment.


Asunto(s)
Compostaje , Contaminantes del Suelo , Cromo/química , Aguas del Alcantarillado , Suelo/química , Contaminantes del Suelo/análisis
7.
Chemosphere ; 281: 130752, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34015649

RESUMEN

In the last years, uncontrolled fires are frequently occurring in forest and agricultural areas as an indirect effect of the rising aridity and global warming or caused by intentional illegal burnings. In addition, controlled burning is still largely used by farmers as an agricultural practice in many parts of the world. During fire events, soil can reach very high temperatures at the soil surface, causing dramatic changes of soil properties and elements biogeochemistry. Among soil elements, also potentially toxic elements (PTEs) can be affected by fires, becoming more or less mobile and bioavailable, depending on fire severity and soil characteristics. Such transformations could be particularly relevant in agricultural soils used for crop productions since fire events could modify PTEs speciation and uptake by plants and associated (micro)organisms thus endangering the whole food-chain. In this review, after describing the effects of fire on soil minerals and organic matter, the impact of fires on PTEs distribution and speciation in soils is presented, as well as their influence on soil microorganisms and plants uptake. The most common experimental methods used to simulate fires at the laboratory and field scale are briefly illustrated, and finally the impact that traditional and innovative agricultural practices can have on PTEs availability in burned agricultural soils is discussed in a future research perspective.


Asunto(s)
Contaminantes del Suelo , Suelo , Agricultura , Disponibilidad Biológica , Bosques , Contaminantes del Suelo/análisis
8.
Heliyon ; 7(2): e06177, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33644466

RESUMEN

Coarse (CF) and Fine (FF) fractions were obtained by dry fractionation (air classification) of raw micronized flour (RM) of kabuli chickpea, green pea, yellow and red lentil. Pea showed the highest phytate content in RM and CF. Stachyose was the main oligosaccharide in lentils, exceeding 50 mg g-1, whereas raffinose (39.9 mg g-1) was abundant in chickpea. Antinutritional factors were significantly enriched in FF, whereas decreased in CF. Total-reflection X-ray fluorescence identified potassium as the main macronutrient in pulses. Ca was highly variable, ranging from 0.92 to 0.28 g kg-1 in pea and yellow lentil, respectively. A significant shift of minerals was observed in FF, but despite the highest phytate content, phytate:Zn ratio of lentils was lower than RM, indicating that Zn was enriched more than phytates. Yellow lentil and pea FF showed a protein content higher than 55 g 100g-1. Dry fractionation significantly affected the physicochemical properties, indicating different potential use of fractions.

9.
Nanoscale Adv ; 3(13): 3918-3928, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36133008

RESUMEN

Stable cesium lead bromide perovskite nanocrystals (NCs) showing a near-unity photoluminescence quantum yield (PLQY), narrow emission profile, and tunable fluorescence peak in the green region can be considered the ideal class of nanomaterials for optoelectronic applications. However, a general route for ensuring the desired features of the perovskite NCs is still missing. In this paper, we propose a synthetic protocol for obtaining near-unity PLQY perovskite nanocubes, ensuring their size control and, consequently, a narrow and intense emission through the modification of the reaction temperature and the suitable combination ratio of the perovskite constituting elements. The peculiarity of this protocol is represented by the dissolution of the lead precursor (PbBr2) as a consequence of the exclusive complexation with the bromide anions released by the in situ SN2 reaction between oleylamine (the only surfactant introduced in the reaction mixture) and 1-bromohexane. The obtained CsPbBr3 nanocubes exhibit variable size (ranging from 6.7 ± 0.7 nm to 15.2 ± 1.2 nm), PL maxima between 505 and 517 nm, and near-unity PLQY with a narrow emission profile (fwhm of 17-19 nm). Additionally, the NCs synthesized with this approach preserve their high PLQYs even after 90 days of storage under ambient conditions, thus displaying a remarkable optical stability. Through the rationalization of the obtained results, the proposed synthetic protocol provides a new ground for the direct preparation of differently structured perovskite NCs without resorting to any additional post-synthetic treatment for improving their emission efficiency and stability.

10.
Curr Microbiol ; 78(2): 464-478, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33354746

RESUMEN

This research aimed at investigating the isolation and identification of bacterial strains with biological nitrogen-fixing capability and phosphate, potassium, and zinc solubilization activities from a durum wheat field under two different tillage practices including 10 years of conventional tillage (CT) and no-tillage (NT) practices. Attempts were also extended to estimate their relative abundances in the soil as well as to develop accurate mathematical models in determining the effect of different temperatures, NaCl concentrations and pH on the growth, and activity of selected isolates. Twelve effective bacterial strains, including Pseudomonas, Acinetobacter, and Comamonas genera, were identified with a great potential to solubilize the insoluble forms of phosphate (from 11.1 to 115.5 mg l-1 at pH 8), potassium (from 32.2 to 35.6 mg l-1 at pH 7), and zinc (from 1.11 to 389.90 mg l-1 at pH 9) as well as to fix N2 gas (from 19.9 to 25.2 mg l-1). To our knowledge, this is the first report of the ability of Comamonas testosteroni and Acinetobacter pittii to fix nitrogen and to solubilize insoluble potassium compound, respectively. Three families, Moraxellaceae, Pseudomonadaceae, and Comamonadaceae, showed a higher percentage of abundance in the NT samples as compared to the CT, but only significant difference was observed in the relative abundance of Pseudomonadaceae (P < 0.01). These strains could be definitively recommended as inoculants to promote plant growth in the wide ranges of pH, salinity levels (with maximum growth and complete inhibition of growth from 0.67-0.92% to 3.5-9.3% NaCl, respectively), and temperatures (2.1-45.1 °C).


Asunto(s)
Acinetobacter , Acinetobacter/genética , Bacterias/genética , Humanos , Suelo , Microbiología del Suelo
11.
Sci Rep ; 10(1): 18759, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127977

RESUMEN

Plasmopara viticola is one of the most important pathogens infecting Vitis vinifera plants. The interactions among P. viticola and both susceptible and resistant grapevine plants have been extensively characterised, at transcriptomic, proteomic and metabolomic levels. However, the involvement of plants ionome in the response against the pathogen has been completely neglected so far. Therefore, this study was aimed at investigating the possible role of leaf ionomic modulation during compatible and incompatible interactions between P. viticola and grapevine plants. In susceptible cultivars, a dramatic redistribution of mineral elements has been observed, thus uncovering a possible role for mineral nutrients in the response against pathogens. On the contrary, the resistant cultivars did not present substantial rearrangement of mineral elements at leaf level, except for manganese (Mn) and iron (Fe). This might demonstrate that, resistant cultivars, albeit expressing the resistance gene, still exploit a pathogen response mechanism based on the local increase in the concentration of microelements, which are involved in the synthesis of secondary metabolites and reactive oxygen species. Moreover, these data also highlight the link between the mineral nutrition and plants' response to pathogens, further stressing that appropriate fertilization strategies can be fundamental for the expression of response mechanisms against pathogens.


Asunto(s)
Minerales/metabolismo , Oomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Vitis/metabolismo , Vitis/microbiología , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Manganeso/metabolismo , Proteómica/métodos
12.
Nanoscale ; 12(32): 17053-17063, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32785320

RESUMEN

The ongoing interest in all-inorganic cesium lead bromide perovskite nanocrystals (CsPbBr3 NCs) is mainly due to their optical properties, in particular their high photoluminescence quantum yields (PLQYs). Three-precursor synthetic methods, in which the sources of the three elements (cesium, lead and bromine) constituting the perovskite scaffold are chemically independent, often succeed in the achievement of near-unity PLQY perovskite NCs. However, this class of synthetic approaches precludes the accessibility to crystal morphologies different from the traditional cuboidal ones. In order to upgrade three-precursor synthetic schemes to obtain more sophisticated morphologies - such as rods - we propose a conceptually original synthetic methodology, in which a potentially controllable stage of the reaction anticipates the fast crystallization promoted by cesium injection. To this purpose, lead oxide, 1-bromohexane (at different molar ratios with respect to lead) and the ligands (oleic acid and a suitable amine) in 1-octadecene are reacted at 160 °C for an incubation period of 30 min before cesium injection. During this stage and at high C6H13Br/PbO molar ratios, the bromide release from reactions between the ligands and 1-bromohexane promotes the evolution of [PbBr(2+n)]n- species as well as of two-dimensional [(RNH3)2(PbBr4)]n structures with a rod-like shape (aspect ratios ∼10). These structures act as the templating agents for the subsequent crystallization promoted by cesium injection, ensuring the formation of near-unity PLQY nanorods in the presence of decylamine. Conversely, the pronounced decomposition of the preformed [(RNH3)2(PbBr4)]n structures preludes to the formation of near-unity PLQY nanocubes in the presence of hexylamine. The amine choice exerts also an important role in the emission stability of the corresponding NCs, since the nanocubes prepared in the presence of hexylamine maintain their near-unity PLQYs up to 90 days under ambient conditions. In addition to the long-term PLQY stability, the nanorods prepared with decylamine also exhibit a remarkable resistance to the presence of water, due to the compact and hydrophobic organic shell passivating the NC surface. These findings can contribute to the development of innovative synthetic methodologies for controlling the shape and stability of near-unity PLQY perovskite NCs.

13.
Sci Rep ; 10(1): 13802, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796860

RESUMEN

Notarchirico (Southern Italy) has yielded the earliest evidence of Acheulean settlement in Italy and four older occupation levels have recently been unearthed, including one with bifaces, extending the roots of the Acheulean in Italy even further back in time. New 40Ar/39Ar on tephras and ESR dates on bleached quartz securely and accurately place these occupations between 695 and 670 ka (MIS 17), penecontemporaneous with the Moulin-Quignon and la Noira sites (France). These new data demonstrate a very rapid expansion of shared traditions over Western Europe during a period of highly variable climatic conditions, including interglacial and glacial episodes, between 670 and 650 (i.e., MIS17/MIS16 transition). The diversity of tools and activities observed in these three sites shows that Western Europe was populated by adaptable hominins during this time. These conclusions question the existence of refuge areas during intense glacial stages and raise questions concerning understudied migration pathways, such as the Sicilian route.

14.
Talanta ; 217: 121114, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32498879

RESUMEN

The combined potentiality of benchtop micro X-ray fluorescence spectroscopy (µ-XRF) and micro computed tomography (µ-CT) has been applied to describe microstructures, type and distribution of mineralogical phases as well as geological constraints on the history of the North West Africa (NWA) 8657 shergottite Martian meteorite. The 3D rendering of the sample was used to compute its vesiculation, infer the presence of cracks and reveal different shapes in its crystal habits including subhedral pyroxene phases and rounded sulphide and/or sulphates minerals. Phase discrimination was achieved by comparing chemical information about element distribution with mineral classes segmented as a function of their relative density. In particular, the relationships between the plagioclase/maskelynite phase and other minerals such as Ca-phosphates, the chemical zoning of Ca-pyroxenes and maskelynite and the presence of S-bearing phases in the form of K-sulphates and Fe-sulphides were revealed, which allowed reconstructing satisfactorily meteorite history. The successful performance of the combined approach used in this work shows promising for further application to other types of meteorites.

15.
Environ Sci Pollut Res Int ; 27(18): 22967-22979, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32323242

RESUMEN

A combined approach based on multiple X-ray analytical techniques and conventional methods was adopted to investigate the distribution and speciation of Cr in a polluted agricultural soil, from the bulk-scale down to the (sub)micro-level. Soil samples were collected from two different points, together with a control sample taken from a nearby unpolluted site. The bulk characterization revealed that the polluted soils contained much higher concentrations of organic matter (OM) and potentially toxic elements (PTE) than the control. Chromium was the most abundant PTE (up to 5160 g kg-1), and was present only as Cr(III), as its oxidation to Cr(VI) was hindered by the high OM content. According to sequential extractions, Cr was mainly associated to the soil oxidisable fraction (74%) and to the residual fraction (25%). The amount of Cr potentially bioavailable for plant uptake (DTPA-extractable) was negligible. Characterization of soil thin sections by micro X-ray fluorescence (µXRF) and field emission scanning electron microscopy coupled with microanalysis (FEGSEM-EDX) showed that Cr was mainly distributed in aggregates ranging from tens micrometres to few millimetres in size. These aggregates were coated with an aluminosilicate layer and contained, in the inner part, Cr, Ca, Zn, P, S and Fe. Hyperspectral elaboration of µXRF data revealed that polluted soils were characterised by an exogenous organic-rich fraction containing Cr (not present in the control), and an endogenous aluminosilicate fraction (present also in the control), coating the Cr-containing aggregates. Analyses by high-resolution micro X-ray computed tomography (µCT) revealed a different morphology of the soil aggregates in polluted soils compared with the control. The finding of microscopic leather residues, combined with the results of bulk- and micro-characterizations, suggested that Cr pollution was likely ascribable to soil amendment with tannery waste-derived matrices. However, over the years, a natural process of Cr stabilization occurred in the soil thus reducing the environmental risks.


Asunto(s)
Contaminantes del Suelo/análisis , Suelo , Cromo/análisis , Contaminación Ambiental , Rayos X
16.
Talanta ; 212: 120785, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32113548

RESUMEN

The research on meteorites from hot and cold deserts is gaining advantages from the recent improvements of portable technologies such as X-ray fluorescence spectroscopy (XRF). The main advantages of portable instruments include the fast recognition of meteorites through their classification in macro-groups and discrimination from materials such as industrial slags, desert varnish covered rocks and iron oxides, named "meteor-wrongs". In this study, 18 meteorite samples of different nature and origin were discriminated and preliminarily classified into characteristic macro-groups: iron meteorites, stony meteorites and meteor-wrongs, combining a portable energy dispersive XRF instrument (pED-XRF), principal component analysis (PCA) and some machine learning algorithms applied to the XRF spectra. The results showed that 100% accuracy in sample classification was obtained by applying the cubic support vector machine (CSVM), fine kernel nearest neighbor (FKNN), subspace discriminant-ensemble classifiers (SD-EC) and subspace discriminant KNN-EC (SKNN-EC) algorithms on standardized spectra.

17.
Nanoscale ; 12(2): 623-637, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31829364

RESUMEN

This study aims at rationalizing the effects of the lead/surfactant ratio on the structural evolution of cesium lead-bromide perovskite nanocrystals (NCs), ascertaining how their shape and surface composition can be modulated by suitably adjusting the ligand amount (an equivolumetric mixture of oleic acid and oleyl amine) relatively to lead bromide. The tailoring of the reaction conditions allows the obtainment of blue-emitting CsPbBr3 nanoplatelets in the presence of ligand excess, while green-emitting nanocubes are achieved under low-surfactant conditions. An insight into the NC's shape evolution dictated by the different reaction conditions suggests that the generation of CsPbBr3 nanoplatelets is controlled by the dimensions of [(RNH3)2(PbBr4)]n layers formed before the injection of cesium oleate. The growth step promoted by preformed layers is concomitant to (but independent from) the nucleation process of lead-based species, leading to centrosymmetric nanocubes (prevalent in low-surfactant regimes) or Cs4PbBr6 NCs (prevalent in high-surfactant regimes). The proposed NC growth is supported by the analysis of the optical properties of non-purified samples, which reveal the selective presence of structures endowed with four cell unit average thickness accompanying larger emissive nanocubes. By combining nuclear magnetic resonance (NMR) and UV-Vis spectroscopy techniques, it is ascertained that the lead/surfactant ratio also controls the relative proportion between lead-based species (PBr2, PbBr3-, PbBr42- and plausibly PbBr53- or PbBr64-) formed before cesium injection, which regulate the size of [(RNH3)2(PbBr4)]n layers as well as the formation of Cs4PbBr6 NCs during the nucleation stage. The surface chemistry of the differently structured perovskite NCs is investigated by correlating the elemental composition of the nanoparticles with specific NMR signals ascribable to the surface ligands. This level of investigation also sheds light on the stability of the time-dependent fluorescence exhibited by differently composed perovskite NCs before the loss of their colloidal integrity. Our findings can bring about a fine tuning of the synthetic methods currently employed for controlling the shape and surface chemistry of perovskite NCs.

18.
Environ Sci Technol ; 53(18): 10961-10968, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31373803

RESUMEN

Combined X-ray-based spectroscopy techniques were applied to investigate arsenic (As) bioaccumulation in earthworms (Eisenia andrei) exposed to six field-collected polluted soils (58-13 330 mg As kg-1). After 14 days of exposure to the arsenious soils, the As distribution in earthworms was examined by micro-X-ray fluorescence spectroscopy (µXRF), after epoxy resin embedding and preparing thin sections. Similar to µXRF data, XRF-computed tomography (XRF-CT) confirmed As accumulation in the coelom of intact earthworms. Therefore, total-reflection XRF was used to determine total As within both the whole earthworm's body (AsE) and coelomic fluid extracts (AsF). Bioaccumulation data (AsE and AsF) were thereafter evaluated in relation to total As concentration in soils (AsT) and to As mobile fraction in soils. A significant linear correlation (R2 = 0.97) was found between AsE and AsF, indicating that the As sequestrated into the coelomic fluid may reflect the total body concentration. Therefore, we may conclude that the As concentration in the coelomic fluid can be used as an index of As availability. This paper demonstrates that by combining different laboratory X-ray analytical techniques, compartmentalization and bioavailability of potentially toxic elements can be visualized and quantified within indicator-living organisms, thus contributing to an improved risk assessment for contaminated soils.


Asunto(s)
Arsénico , Oligoquetos , Contaminantes del Suelo , Animales , Disponibilidad Biológica , Suelo , Rayos X
19.
Food Chem ; 296: 86-93, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31202310

RESUMEN

Microgreens are an emerging class of vegetables, which have become increasingly important in the agri-food market in recent years, and contain a number of macro- and micro-nutrients. This paper presents a rapid method for the elemental analysis of microgreens based on total reflection X-ray fluorescence (TXRF) spectroscopy, without preliminary sample digestion. The following elements were detected and quantified simultaneously for six microgreen genotypes, belonging to Asteraceae and Brassicaceae: P, S, K, Ca, Cl, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr. The limit of detection (LOD) varied depending on the element and ranged between 0.1 mg kg-1 for Sr and 42 mg kg-1 for P. The method was validated using certified standards, and results compared with those obtained using a conventional ICP-AES method requiring sample digestion. The paper also presents the advantages and disadvantages of the two techniques.


Asunto(s)
Espectrometría por Rayos X/métodos , Oligoelementos/análisis , Verduras/química , Asteraceae/química , Asteraceae/metabolismo , Brassicaceae/química , Brassicaceae/metabolismo , Límite de Detección
20.
Chemosphere ; 233: 422-430, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31176906

RESUMEN

Biochar (BC) and hydrochar (HC) are solid by-products obtained from various types of biomasses through the processes of pyrolysis and hydrothermal carbonization, respectively. Both BC and HC represent a sustainable solution for carbon sequestration and can be used as soil amendments or sorbents for organic and inorganic pollutants. However, the properties of BC and HC largely depend on feedstock and production parameters, which significantly affect their proper use. A detailed characterization of these materials is therefore needed to assess their suitability for environmental and/or agricultural applications. In this work, two BC samples and two HC samples were characterized with a multianalytical approach, including total reflection X-ray fluorescence (TXRF) spectroscopy, scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analyses (TG), and pyrolysis coupled to gas chromatography and mass spectrometry (Py-GC/MS). By comparing BC and HC data, HC showed a higher content of mineral elements, including important plant nutrients and potentially toxic elements. HC produced from solid urban wastes contained also some potentially toxic organic molecules, like chlorinated aromatic compounds. BC samples were characterized by a higher porosity and hydrophobicity than HC, thus being potentially more suitable for the sorption of organic pollutants. HC samples showed a higher content of cellulose and hemicellulose, resulting in a more hydrophilic but less thermally stable material than BC. In conclusion, both BC and HC have interesting properties for environmental and agricultural applications but careful selection of feedstock is needed, especially for HC production.


Asunto(s)
Carbón Orgánico/química , Conservación de los Recursos Naturales/métodos , Contaminantes Ambientales/análisis , Fertilizantes/análisis , Residuos Sólidos/análisis , Adsorción , Biomasa , Secuestro de Carbono , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...