RESUMEN
Rationale: Increased IL-8 levels and neutrophil accumulation in the airways are common features found in patients affected by pulmonary diseases such as Asthma, Idiopathic Pulmonary Fibrosis, Influenza-A infection and COPD. Chronic neutrophilic inflammation is usually corticosteroid insensitive and may be relevant in the progression of those diseases. Objective: To explore the role of Ladarixin, a dual CXCR1/2 antagonist, in several mouse models of airway inflammation with a significant neutrophilic component. Findings: Ladarixin was able to reduce the acute and chronic neutrophilic influx, also attenuating the Th2 eosinophil-dominated airway inflammation, tissue remodeling and airway hyperresponsiveness. Correspondingly, Ladarixin decreased bleomycin-induced neutrophilic inflammation and collagen deposition, as well as attenuated the corticosteroid resistant Th17 neutrophil-dominated airway inflammation and hyperresponsiveness, restoring corticosteroid sensitivity. Finally, Ladarixin reduced neutrophilic airway inflammation during cigarette smoke-induced corticosteroid resistant exacerbation of Influenza-A infection, improving lung function and mice survival. Conclusion: CXCR1/2 antagonist Ladarixin offers a new strategy for therapeutic treatment of acute and chronic neutrophilic airway inflammation, even in the context of corticosteroid-insensitivity.
Asunto(s)
Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores de Interleucina-8A/antagonistas & inhibidores , Receptores de Interleucina-8B/antagonistas & inhibidores , Enfermedades Respiratorias/etiología , Enfermedades Respiratorias/metabolismo , Sulfonamidas/farmacología , Animales , Antiinflamatorios/farmacología , Asma/tratamiento farmacológico , Asma/etiología , Asma/metabolismo , Asma/patología , Biomarcadores , Biopsia , Bleomicina/efectos adversos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Eosinófilos/inmunología , Eosinófilos/metabolismo , Femenino , Fibrosis , Inmunohistoquímica , Leucocitos , Masculino , Ratones , Ratones Noqueados , Ovalbúmina/efectos adversos , Oxidación-Reducción , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Enfermedades Respiratorias/tratamiento farmacológico , Enfermedades Respiratorias/patología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
RATIONALE: Influenza A infections are a leading cause of morbidity and mortality worldwide especially when associated with secondary pneumococcal infections. Inflammation is important to control pathogen proliferation but may also cause tissue injury and death. CXCR1/2 are chemokine receptors relevant for the recruitment of neutrophils. We investigated the role of CXCR1/2 during influenza, pneumococcal, and post-influenza pneumococcal infections. METHODS: Mice were infected with influenza A virus (IAV) or Streptococcus pneumoniae and then treated daily with the CXCR1/2 antagonist DF2162. To study secondary pneumococcal infection, mice were infected with a sublethal inoculum of IAV then infected with S. pneumoniae 14 days later. DF2162 was given in a therapeutic schedule from days 3 to 6 after influenza infection. Lethality, weight loss, inflammation, virus/bacteria counts, and lung injury were assessed. RESULTS: CXCL1 and CXCL2 were produced at high levels during IAV infection. DF2162 treatment decreased morbidity and this was associated with decreased infiltration of neutrophils in the lungs and reduced pulmonary damage and viral titers. During S. pneumoniae infection, DF2162 treatment decreased neutrophil recruitment, pulmonary damage, and lethality rates, without affecting bacteria burden. Therapeutic treatment with DF2162 during sublethal IAV infection reduced the morbidity associated with virus infection and also decreased the magnitude of inflammation, lung damage, and number of bacteria in the blood of mice subsequently infected with S. pneumoniae. CONCLUSION: Modulation of the inflammatory response by blocking CXCR1/2 improves disease outcome during respiratory influenza and pneumococcal infections, without compromising the ability of the murine host to deal with infection. Altogether, inhibition of CXCR1/2 may be a valid therapeutic strategy for treating lung infections caused by these pathogens, especially controlling secondary bacterial infection after influenza.
RESUMEN
BACKGROUND: Ischemia-reperfusion (IR) is a major contributor to graft rejection after liver transplantation. During IR injury, an intense inflammatory process occurs in the liver. Neutrophils are considered central players in the events that lead to liver injury. CXC chemokines mediate hepatic inflammation following reperfusion. However, few studies have demonstrated in real-time the behavior of recruited neutrophils. We used confocal intravital microscopy (IVM) to image neutrophil migration in the liver and to analyze in real-time parameters of neutrophil recruitment in the inflamed tissue in animals treated or not with reparixin, an allosteric antagonist of CXCR1/2 receptors. MATERIALS AND METHODS: WT and LysM-eGFP mice treated with reparixin or saline were subjected to 60 min of ischemia followed by different times of reperfusion. Mice received Sytox orange intravenously to show necrotic DNA in IVM. The effect of reparixin on parameters of local and systemic reperfusion-induced injury was also investigated. RESULTS: IR induced liver injury and inflammation, as evidenced by high levels of alanine aminotransferase and myeloperoxidase activity, chemokine and cytokine production, and histological outcome. Treatment with reparixin significantly decreased neutrophil influx. Moreover, reparixin effectively suppressed the increase in serum concentrations of TNF-α, IL-6, and CCL3, and the reperfusion-associated tissue damage. The number of neutrophils in the liver increased between 6 and 24 h of reperfusion, whereas the distance traveled, velocity, neutrophil size and shape, and cluster formation reached a maximum 6 h after reperfusion and then decreased gradually. In vivo imaging revealed that reparixin significantly decreased neutrophil infiltration and movement and displacement of recruited cells. Moreover, neutrophils had a smaller size and less elongated shape in treated mice. CONCLUSION: Imaging of the liver by confocal IVM was successfully implemented to describe neutrophil behavior in vivo during liver injury by IR. Treatment with reparixin decreased not only the recruitment of neutrophils in tissues but also their activation state and capacity to migrate within the liver. CXCR1/2 antagonists may be a promising therapy for patients undergoing liver transplantation.
RESUMEN
1. Neutrophils are thought to play a major role in the mediation of reperfusion injury. CXC chemokines are known inducers of neutrophil recruitment. Here, we assessed the effects of Repertaxin, a novel low molecular weight inhibitor of human CXCL8 receptor activation, on the local, remote and systemic injuries following intestinal ischaemia and reperfusion (I/R) in the rat. 2. Pre-incubation of rat neutrophils with Repertaxin (10(-11)-10(-6) m) inhibited the chemotaxis of neutrophils induced by human CXCL8 or rat CINC-1, but not that induced by fMLP, PAF or LTB(4), in a concentration-dependent manner. Repertaxin also prevented CXCL8-induced calcium influx but not CXCL8 binding to purified rat neutrophils. 2. In a model of mild I/R injury (30 min of ischaemia and 30 min of reperfusion), Repertaxin dose-dependently (3-30 mg kg(-1)) inhibited the increase in vascular permeability and neutrophil influx. Maximal inhibition occurred at 30 mg kg(-1). 4. Following severe I/R injury (120 min of ischaemia and 120 min of reperfusion), Repertaxin (30 mg kg(-1)) markedly prevented neutrophil influx, the increase in vascular permeability both in the intestine and the lungs. Moreover, there was prevention of haemorrhage in the intestine of reperfused animals. 5. Repertaxin effectively suppressed the increase in tissue (intestine and lungs) and serum concentrations of TNF-alpha and the reperfusion-associated lethality. 6. For comparison, we also evaluated the effects of an anti-CINC-1 antibody in the model of severe I/R injury. Overall, the antibody effectively prevented tissue injury, systemic inflammation and lethality. However, the effects of the antibody were in general of lower magnitude than those of Repertaxin. 7. In conclusion, CINC-1 and possibly other CXC chemokines, acting on CXCR2, have an important role during I/R injury. Thus, drugs, such as Repertaxin, developed to block the function of the CXCR2 receptor may be effective at preventing reperfusion injury in relevant clinical situations.