Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(1): e0418922, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38059630

RESUMEN

IMPORTANCE: Despite the increasing prevalence of antibiotic-resistant Escherichia coli strains that cause urinary tract and bloodstream infections, a major pandemic lineage of extraintestinal pathogenic E. coli (ExPEC) ST95 has a comparatively low frequency of drug resistance. We compared the genomes of 1,749 ST95 isolates to identify genetic features that may explain why most strains of ST95 resist becoming drug-resistant. Identification of such genomic features could contribute to the development of novel strategies to prevent the spread of antibiotic-resistant genes and devise new measures to control antibiotic-resistant infections.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Humanos , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Pandemias , Antibacterianos/farmacología , Filogenia , Factores de Virulencia/genética
2.
Microorganisms ; 11(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37630441

RESUMEN

The association of tuberculosis and type 2 diabetes mellitus has been a recognized re-emerging challenge in management of the convergence of the two epidemics. Though much of the literature has studied this association, there is less knowledge in the field of genetic diversities that might occur in strains infecting tuberculosis patients with and without diabetes. Our study focused on determining the extent of diversity of genotypes of Mycobacterium tuberculosis in both these categories of patients. We subjected 55 M. tuberculosis isolates from patients diagnosed with pulmonary TB with and without type 2 diabetes mellitus to whole-genome sequencing on Illumina Hi Seq platform. The most common lineage identified was lineage 1, the Indo-Oceanic lineage (n = 22%), followed by lineage 4, the Euro-American lineage (n = 18, 33%); lineage 3, the East-African Indian lineage (n = 13, 24%); and lineage 2, the East-Asian lineage (n = 1, 2%). There were no significant differences in the distribution of lineages in both diabetics and non-diabetics in the South Indian population, and further studies involving computational analysis and comparative transcriptomics are needed to provide deeper insights.

3.
mSphere ; 7(6): e0047122, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36377882

RESUMEN

Antimicrobial resistance in urinary tract infections (UTIs) is a major public health concern. This study aims to characterize the phenotypic and genetic basis of multidrug resistance (MDR) among expanded-spectrum cephalosporin-resistant (ESCR) uropathogenic Escherichia coli (UPEC) causing UTIs in California patient populations. Between February and October 2019, 577 ESCR UPEC isolates were collected from patients at 6 clinical laboratory sites across California. Lineage and antibiotic resistance genes were determined by analysis of whole-genome sequence data. The lineages ST131, ST1193, ST648, and ST69 were predominant, representing 46%, 5.5%, 4.5%, and 4.5% of the collection, respectively. Overall, 527 (91%) isolates had an expanded-spectrum ß-lactamase (ESBL) phenotype, with blaCTX-M-15, blaCTX-M-27, blaCTX-M-55, and blaCTX-M-14 being the most prevalent ESBL genes. In the 50 non-ESBL phenotype isolates, 40 (62%) contained blaCMY-2, which was the predominant plasmid-mediated AmpC (pAmpC) gene. Narrow-spectrum ß-lactamases, blaTEM-1B and blaOXA-1, were also found in 44.9% and 32.1% of isolates, respectively. Among ESCR UPEC isolates, isolates with an ESBL phenotype had a 1.7-times-greater likelihood of being MDR than non-ESBL phenotype isolates (P < 0.001). The cooccurrence of blaCTX-M-15, blaOXA-1, and aac(6')-Ib-cr within ESCR UPEC isolates was strongly correlated. Cooccurrence of blaCTX-M-15, blaOXA-1, and aac(6')-Ib-cr was associated with an increased risk of nonsusceptibility to piperacillin-tazobactam, cefepime, fluoroquinolones, and amikacin as well as MDR. Multivariate regression revealed the presence of blaCTX-M-55, blaTEM-1B, and the ST131 genotype as predictors of MDR. IMPORTANCE The rising incidence of resistance to expanded-spectrum cephalosporins among Escherichia coli strains, the most common cause of UTIs, is threatening our ability to successfully empirically treat these infections. ESCR E. coli strains are often MDR; therefore, UTI caused by these organisms often leads to treatment failure, increased length of hospital stay, and severe complications (D. G. Mark, Y.-Y. Hung, Z. Salim, N. J. Tarlton, et al., Ann Emerg Med 78:357-369, 2021, https://doi.org/10.1016/j.annemergmed.2021.01.003). Here, we performed an in-depth analysis of genetic factors of ESCR E. coli associated with coresistance and MDR. Such knowledge is critical to advance UTI diagnosis, treatment, and antibiotic stewardship.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Uropatógena , Humanos , Cefalosporinas/farmacología , Escherichia coli Uropatógena/genética , Infecciones por Escherichia coli/epidemiología , beta-Lactamasas/genética , Fenotipo , Monobactamas , Farmacorresistencia Bacteriana Múltiple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA