Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Biol Fishes ; 106(2): 381-416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36118617

RESUMEN

Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.

2.
Glob Chang Biol ; 28(10): 3163-3187, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35100489

RESUMEN

Climate change is transforming ecosystems and affecting ecosystem goods and services. Along the Gulf of Mexico and Atlantic coasts of the southeastern United States, the frequency and intensity of extreme freeze events greatly influence whether coastal wetlands are dominated by freeze-sensitive woody plants (mangrove forests) or freeze-tolerant grass-like plants (salt marshes). In response to warming winters, mangroves have been expanding and displacing salt marshes at varying degrees of severity in parts of north Florida, Louisiana, and Texas. As winter warming accelerates, mangrove range expansion is expected to increasingly modify wetland ecosystem structure and function. Because there are differences in the ecological and societal benefits that salt marshes and mangroves provide, coastal environmental managers are challenged to anticipate the effects of mangrove expansion on critical wetland ecosystem services, including those related to carbon sequestration, wildlife habitat, storm protection, erosion reduction, water purification, fisheries support, and recreation. Mangrove range expansion may also affect wetland stability in the face of extreme climatic events and rising sea levels. Here, we review the current understanding of the effects of mangrove range expansion and displacement of salt marshes on wetland ecosystem services in the southeastern United States. We also identify critical knowledge gaps and emerging research needs regarding the ecological and societal implications of salt marsh displacement by expanding mangrove forests. One consistent theme throughout our review is that there are ecological trade-offs for consideration by coastal managers. Mangrove expansion and marsh displacement can produce beneficial changes in some ecosystem services, while simultaneously producing detrimental changes in other services. Thus, there can be local-scale differences in perceptions of the impacts of mangrove expansion into salt marshes. For very specific local reasons, some individuals may see mangrove expansion as a positive change to be embraced, while others may see mangrove expansion as a negative change to be constrained.


Asunto(s)
Ecosistema , Humedales , Secuestro de Carbono , Cambio Climático , Humanos , Sudeste de Estados Unidos
3.
PLoS One ; 15(8): e0230985, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32845879

RESUMEN

Spearfishing is currently the primary approach for removing invasive lionfish (Pterois volitans/miles) to mitigate their impacts on western Atlantic marine ecosystems, but a substantial portion of lionfish spawning biomass is beyond the depth limits of SCUBA divers. Innovative technologies may offer a means to target deepwater populations and allow for the development of a lionfish trap fishery, but the removal efficiency and potential environmental impacts of lionfish traps have not been evaluated. We tested a collapsible, non-containment trap (the 'Gittings trap') near artificial reefs in the northern Gulf of Mexico. A total of 327 lionfish and 28 native fish (four were species protected with regulations) recruited (i.e., were observed within the trap footprint at the time of retrieval) to traps during 82 trap sets, catching 144 lionfish and 29 native fish (one more than recruited, indicating detection error). Lionfish recruitment was highest for single (versus paired) traps deployed <15 m from reefs with a 1-day soak time, for which mean lionfish and native fish recruitment per trap were approximately 5 and 0.1, respectively. Lionfish from traps were an average of 19 mm or 62 grams larger than those caught spearfishing. Community impacts from Gittings traps appeared minimal given that recruitment rates were >10X higher for lionfish than native fishes and that traps did not move on the bottom during two major storm events, although further testing will be necessary to test trap movement with surface floats. Additional research should also focus on design and operational modifications to improve Gittings trap deployment success (68% successfully opened on the seabed) and reduce lionfish escapement (56% escaped from traps upon retrieval). While removal efficiency for lionfish demonstrated by traps (12-24%) was far below that of spearfishing, Gittings traps appear suitable for future development and testing on deepwater natural reefs, which constitute >90% of the region's reef habitat.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Restauración y Remediación Ambiental/métodos , Especies Introducidas/tendencias , Animales , Biomasa , Arrecifes de Coral , Ecosistema , Peces/crecimiento & desarrollo , Golfo de México , Perciformes/crecimiento & desarrollo , Densidad de Población , Dinámica Poblacional , Conducta Predatoria
4.
PLoS One ; 15(6): e0234083, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32569296

RESUMEN

Globally, rising temperatures have resulted in numerous examples of poleward shifts in species distribution patterns with accompanying changes in community structure and ecosystem processes. In the Gulf of Mexico, higher mean temperatures and less frequent winter freezes have led to the expansion of tropics-associated marine organisms. Our objectives were to quantify changing environmental conditions and the poleward expansion of the common snook Centropomus undecimalis into the Cedar Keys area of Florida, USA (29 deg N). The snook is an economically and recreationally important sport fish found from southern Brazil to south Florida. Cedar Key and the Lower Suwannee River are north of the snook's historically documented range, likely due to lethal water temperatures during winter. Using data from a long-term monitoring program, we report an increase in catches of snook in this area since 2007. The spatial and temporal expansion of the species began with adult fish in 2007. By 2018, snook of all sizes were found in the region, and we found strong evidence of local reproduction during 2016-2018. The locations of nursery habitat and winter thermal refuges (e.g., freshwater springs) need to be identified and have implications for land-use policy and minimum-flow regulations for rivers. The arrival of the snook in the northern Gulf of Mexico could affect food web ecology and habitat interactions among estuarine predators, and future studies should evaluate snook's food habits and competitive interactions with resident fishes in this expanded range. Our study provides an example of how species range expansions due to changing temperatures should result in new research priorities to evaluate impacts of climate change on coastal systems.


Asunto(s)
Ecosistema , Perciformes/crecimiento & desarrollo , Animales , Cambio Climático , Cadena Alimentaria , Golfo de México , Estaciones del Año
5.
Sci Rep ; 10(1): 1934, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32020056

RESUMEN

Invasive Indo-Pacific lionfish Pterois volitans/miles have become well-established in many western Atlantic marine habitats and regions. However, high densities and low genetic diversity could make their populations susceptible to disease. We examined changes in northern Gulf of Mexico (nGOM) lionfish populations following the emergence of an ulcerative skin disease in August 2017, when estimated disease prevalence was as high as 40%. Ulcerated female lionfish had 9% lower relative condition compared to non-ulcerated females. Changes in lionfish size composition indicated a potential recruitment failure in early summer 2018, when the proportion of new recruits declined by >80%. Remotely operated vehicle surveys during 2016-2018 indicated lionfish population density declined in 2018 by 75% on natural reefs. The strongest declines (77-79%) in lionfish density were on high-density (>25 lionfish per 100 m2) artificial reefs, which declined to similar levels as low-density (<15 lionfish per 100 m2) artificial reefs that had prior lionfish removals. Fisheries-dependent sampling indicated lionfish commercial spearfishing landings, commercial catch per unit effort (CPUE), and lionfish tournament CPUE also declined approximately 50% in 2018. Collectively, these results provide correlative evidence for density-dependent epizootic population control, have implications for managing lionfish and impacted native species, and improve our understanding of biological invasions.


Asunto(s)
Enfermedades de los Peces/epidemiología , Peces , Especies Introducidas/estadística & datos numéricos , Animales , Enfermedades Transmisibles Emergentes/mortalidad , Enfermedades Transmisibles Emergentes/veterinaria , Arrecifes de Coral , Femenino , Enfermedades de los Peces/mortalidad , Golfo de México , Masculino , Prevalencia , Úlcera Cutánea/mortalidad , Úlcera Cutánea/veterinaria
6.
Ecol Appl ; 28(8): 2033-2054, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30144215

RESUMEN

Fish stocking and harvest regulations are frequently used to maintain or enhance freshwater recreational fisheries and contribute to fish conservation. However, their relative effectiveness has rarely been systematically evaluated using quantitative models that account for key size- and density-dependent ecological processes and adaptive responses of anglers. We present an integrated model of freshwater recreational fisheries where the population dynamics of two model species affect the effort dynamics of recreational anglers. With this model, we examined how stocking various fish densities and sizes (fry, fingerlings, and adults) performed relative to minimum-length limits using a variety of biological, social, and economic performance measures, while evaluating trade-offs. Four key findings are highlighted. First, stocking often augmented the exploited fish population, but size- and density-dependent bottlenecks limited the number of fry and fingerlings surviving to a catchable size in self-sustaining populations. The greatest enhancement of the catchable fish population occurred when large fish that escaped early bottlenecks were stocked, but this came at the cost of wild-stock replacement, thereby demonstrating a fundamental trade-off between fisheries benefits and conservation. Second, the relative performance of stocking naturally reproducing populations was largely independent of habitat quality and was generally low. Third, stocking was only economically advisable when natural reproduction was impaired or absent, stocking rates were low, and enough anglers benefitted from stocking to offset the associated costs. Fourth, in self-sustaining fish populations, minimum-length limits generally outperformed stocking when judged against a range of biological, social and economic objectives. By contrast, stocking in culture-based fisheries often generated substantial benefits. Collectively, our study demonstrates that size- and density-dependent processes, and broadly the degree of natural recruitment, drive the biological, social, and economic outcomes of popular management actions in recreational fisheries. To evaluate these outcomes and the resulting trade-offs, integrated fisheries-management models that explicitly consider the feedbacks among ecological and social processes are needed.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Peces , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/legislación & jurisprudencia , Modelos Biológicos , Dinámica Poblacional , Recreación
7.
PLoS One ; 10(6): e0130056, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26047487

RESUMEN

Fishes are one of the most commonly introduced aquatic taxa worldwide, and invasive fish species pose threats to biodiversity and ecosystem function in recipient waters. Considerable research efforts have focused on predicting the invasibility of different fish taxa; however, accurate records detailing the establishment and spread of invasive fishes are lacking for large numbers of fish around the globe. In response to these data limitations, a low-cost method of cataloging and quantifying the temporal and spatial status of fish invasions was explored. Specifically, angler catch data derived from competitive bass angling tournaments was used to document the distribution of 66 non-native populations of black bass (Micropterus spp.) in southern Africa. Additionally, catch data from standardized tournament events were used to assess the abundance and growth of non-native bass populations in southern Africa relative to their native distribution (southern and eastern United States). Differences in metrics of catch per unit effort (average number of fish retained per angler per day), daily bag weights (the average weight of fish retained per angler), and average fish weight were assessed using catch data from 14,890 angler days of tournament fishing (11,045 days from South Africa and Zimbabwe; 3,845 days from the United States). No significant differences were found between catch rates, average daily bag weight, or the average fish weight between countries, suggesting that bass populations in southern Africa reach comparable sizes and numbers relative to waters in their native distribution. Given the minimal cost associated with data collection (i.e. records are collected by tournament organizers), the standardized nature of the events, and consistent bias (i.e. selection for the biggest fish in a population), the use of angler catch data represents a novel approach to infer the status and distribution of invasive sport fish.


Asunto(s)
Lubina/crecimiento & desarrollo , Especies Introducidas , Recreación , Deportes/estadística & datos numéricos , África Austral , Animales , Biodiversidad , Conducta Competitiva , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Explotaciones Pesqueras/métodos , Explotaciones Pesqueras/estadística & datos numéricos , Geografía , Humanos , Densidad de Población , Dinámica Poblacional , Sudáfrica , Estados Unidos , Zimbabwe
8.
PLoS One ; 6(5): e19666, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21572951

RESUMEN

The lionfish, Pterois volitans (Linnaeus) and Pterois miles (Bennett), invasion of the Western Atlantic Ocean, Caribbean Sea and Gulf of Mexico has the potential to alter aquatic communities and represents a legitimate ecological concern. Several local removal programs have been initiated to control this invasion, but it is not known whether removal efforts can substantially reduce lionfish numbers to ameliorate these concerns. We used an age-structured population model to evaluate the potential efficacy of lionfish removal programs and identified critical data gaps for future studies. We used high and low estimates for uncertain parameters including: length at 50% vulnerability to harvest (L(vul)), instantaneous natural mortality (M), and the Goodyear compensation ratio (CR). The model predicted an annual exploitation rate between 35 and 65% would be required to cause recruitment overfishing on lionfish populations for our baseline parameter estimates for M and CR (0.5 and 15). Lionfish quickly recovered from high removal rates, reaching 90% of unfished biomass six years after a 50-year simulated removal program. Quantifying lionfish natural mortality and the size-selective vulnerability to harvest are the most important knowledge gaps for future research. We suggest complete eradication of lionfish through fishing is unlikely, and substantial reduction of adult abundance will require a long-term commitment and may be feasible only in small, localized areas where annual exploitation can be intense over multiple consecutive years.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Perciformes/fisiología , Envejecimiento/fisiología , Animales , Peso Corporal , Simulación por Computador , Femenino , Masculino , Modelos Biológicos , North Carolina , Perciformes/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...