Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
2.
Obstet Gynecol ; 137(1): 179-180, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399419
3.
FASEB J ; 32(3): 1265-1280, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101223

RESUMEN

Cystathionine ß-synthase-deficient homocystinuria (HCU) is a poorly understood, life-threatening inborn error of sulfur metabolism. Analysis of hepatic glutathione (GSH) metabolism in a mouse model of HCU demonstrated significant depletion of cysteine, GSH, and GSH disulfide independent of the block in trans-sulfuration compared with wild-type controls. HCU induced the expression of the catalytic and regulatory subunits of γ-glutamyl ligase, GSH synthase (GS), γ-glutamyl transpeptidase 1, 5-oxoprolinase (OPLAH), and the GSH-dependent methylglyoxal detoxification enzyme, glyoxalase-1. Multiple components of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant-response regulatory axis were induced without any detectable activation of Nrf2. Metabolomic analysis revealed the accumulation of multiple γ-glutamyl amino acids and that plasma ophthalmate levels could serve as a noninvasive marker for hepatic redox stress. Neither cysteine, nor betaine treatment was able to reverse the observed enzyme inductions. Taurine treatment normalized the expression levels of γ-glutamyl ligase C/M, GS, OPLAH, and glyoxalase-1, and reversed HCU-induced deficits in protein glutathionylation by acting to double GSH levels relative to controls. Collectively, our data indicate that the perturbation of the γ-glutamyl cycle could contribute to multiple sequelae in HCU and that taurine has significant therapeutic potential for both HCU and other diseases for which GSH depletion is a critical pathogenic factor.-Maclean, K. N., Jiang, H., Aivazidis, S., Kim, E., Shearn, C. T., Harris, P. S., Petersen, D. R., Allen, R. H., Stabler, S. P., Roede, J. R. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism.


Asunto(s)
Aminobutiratos/metabolismo , Homocistinuria/metabolismo , Hígado/metabolismo , Piruvaldehído/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Ácidos Sulfínicos/metabolismo , Taurina/farmacología , Aminoácidos/metabolismo , Animales , Cistationina betasintasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Homocistinuria/tratamiento farmacológico , Homocistinuria/patología , Hígado/efectos de los fármacos , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , gamma-Glutamiltransferasa/metabolismo
4.
Ann Biomed Eng ; 46(1): 1-13, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29019076

RESUMEN

Following the footprints of Bill Gates, Steve Jobs and Mark Zuckerberg, there has been a misconception that students are better off quitting their studies to bring to life their ideas, create jobs and monetize their inventions. Having historically transitioned from manpower to mind power, we live in one of the most rapidly changing times in human history. As a result, academic institutions that are supposed to be pioneers and educators of the next generations have started to realize that they need to adapt to a new system, and change their policies to be more flexible towards patent ownership and commercialization. There is an infrastructure being developed towards students starting their own businesses while continuing with their studies. This paper aims to provide an overview of the existing landscape, the exciting rewards as well as risks awaiting a student entrepreneur, the challenges of the present ecosystem, and questions to consider prior to embarking on such a journey. Various entities influencing the start-up environment are considered, specifically for the medical technology sector. These parties include but are not limited to: scientists, clinicians, investors, academic institutions and governments. A special focus will be set on the seemingly unbridgeable gap between founding a company and a scientific career.


Asunto(s)
Emprendimiento , Estudiantes , Tecnología , Equipos y Suministros , Humanos , Invenciones
5.
Mol Genet Metab ; 122(4): 160-171, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29153845

RESUMEN

Vitamin B12 (cobalamin, Cbl) is a micronutrient essential to human health. Cbl is not utilized as is but must go through complex subcellular and metabolic processing to generate two cofactor forms: methyl-Cbl for methionine synthase, a cytosolic enzyme; and adenosyl-Cbl for methylmalonyl-CoA mutase, a mitochondrial enzyme. Some 10-12 human genes have been identified responsible for the intracellular conversion of Cbl to cofactor forms, including genes that code for ATP-binding cassette (ABC) transporters acting at the lysosomal and plasma membranes. However, the gene for mitochondrial uptake is not known. We hypothesized that ABC transporters should be candidates for other uptake and efflux functions, including mitochondrial transport, and set out to screen ABC transporter mutants for blocks in Cbl utilization using the nematode roundworm Caenorhabditis elegans. Thirty-seven mutant ABC transporters were screened for the excretion of methylmalonic acid (MMA), which should result from loss of Cbl transport into the mitochondria. One mutant, wht-6, showed elevated MMA excretion and reduced [14C]-propionate incorporation, pointing to a functional block in methylmalonyl-CoA mutase. In contrast, the wht-6 mutant appeared to have a normal cytosolic pathway based on analysis of cystathionine excretion, suggesting that cytosolic methionine synthase was functioning properly. Further, the MMA excretion in wht-6 could be partially reversed by including vitamin B12 in the assay medium. The human ortholog of wht-6 is a member of the G family of ABC transporters. We propose wht-6 as a candidate for the transport of Cbl into mitochondria and suggest that a member of the corresponding ABCG family of ABC transporters has this role in humans. Our ABC transporter screen also revealed that mrp-1 and mrp-2 mutants excreted lower MMA than wild type, suggesting they were concentrating intracellular Cbl, consistent with the cellular efflux defect proposed for the mammalian MRP1 ABC transporter.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Caenorhabditis elegans/metabolismo , Vitamina B 12/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Animales , Transporte Biológico , Caenorhabditis elegans/genética , Citosol/enzimología , Citosol/metabolismo , Humanos , Lisosomas/metabolismo , Espectrometría de Masas , Ácido Metilmalónico/metabolismo , Metilmalonil-CoA Mutasa/metabolismo , Mitocondrias/enzimología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Mutación , Propionatos/metabolismo
7.
JIMD Rep ; 37: 55-61, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275971

RESUMEN

Extreme hyperhomocysteinemia with low cystathionine and cysteine is virtually diagnostic of cystathionine beta-synthase (CBS) deficiency since remethylation defects and hypermethioninemia due to other inborn errors cause elevated serum cystathionine. However, a pregnant CBS deficient patient was found to have elevated cystathionine in addition to elevated total homocysteine and methionine at 23 weeks of gestation and post-delivery cystathionine decreased to the lower level of normal. A second patient with cystathionine values during gestation also showed a rise from the low pre-pregnant value to massive elevation by delivery. Her infant had severe hyperhomocysteinemia in cord blood with a massive elevation of cystathionine, S-adenosylmethionine, and S-adenosylhomocysteine. The infant corrected her homocysteine value by 2 months and is not affected. This data demonstrates that the fetus when exposed to high homocysteine and methionine has increased synthesis of cystathionine which cannot be cleared because the fetus lacks cystathionine gamma-lyase, and thus cystathionine is returned to the mother's circulation. This situation could lead to a misdiagnosis of the cause of hyperhomocysteinemia in a previously undiagnosed pregnant CBS deficient patient. Assays combining homocysteine with cystathionine measurements are commonly available from commercial laboratories in the USA. The recognition of CBS deficiency vs. remethylation disorders is important in order to maximize treatment. The cord blood values revealed a major disturbance in methionine metabolism including a potential for impaired transmethylation reactions in the fetus due to the buildup of S-adenosylhomocysteine. It is possible that monitoring maternal cystathionine during gestation could provide another measure of fetal exposure to homocysteine.

8.
Mol Genet Metab ; 120(4): 325-336, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28291718

RESUMEN

Classical homocystinuria (HCU) due to inactivating mutation of cystathionine ß-synthase (CBS) is a poorly understood life-threatening inborn error of sulfur metabolism. A previously described cbs-/- mouse model exhibits a semi-lethal phenotype due to neonatal liver failure. The transgenic HO mouse model of HCU exhibits only mild liver injury and recapitulates multiple aspects of the disease as it occurs in humans. Disruption of the methionine cycle in HCU has the potential to impact multiple aspect of phospholipid (PL) metabolism by disruption of both the Kennedy pathway and phosphatidylethanolamine N-methyltransferase (PEMT) mediated synthesis of phosphatidylcholine (PC). Comparative metabolomic analysis of HO mouse liver revealed decreased levels of choline, and choline phosphate indicating disruption of the Kennedy pathway. Alterations in the relative levels of multiple species of PL included significant increases in PL degradation products consistent with enhanced membrane PL turnover. A significant decrease in PC containing 20:4n6 which primarily formed by the methylation of phosphatidylethanolamine to PC was consistent with decreased flux through PEMT. Hepatic expression of PEMT in both the cbs-/- and HO models is post-translationally repressed with decreased levels of PEMT protein and activity that inversely-correlates with the scale of liver injury. Failure to induce further repression of PEMT in HO mice by increased homocysteine, methionine and S-adenosylhomocysteine or depletion of glutathione combined with examination of multiple homocysteine-independent models of liver injury indicated that repression of PEMT in HCU is a consequence rather than a cause of liver injury. Collectively, our data show significant alteration of a broad range of hepatic PL and choline metabolism in HCU with the potential to contribute to multiple aspects of pathogenesis in this disease.


Asunto(s)
Colina/metabolismo , Homocistinuria/enzimología , Hígado/química , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Fosfolípidos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Hígado/lesiones , Metabolómica , Ratones , Ratones Noqueados , Fosfatidiletanolamina N-Metiltransferasa/genética , Procesamiento Proteico-Postraduccional
9.
PLoS One ; 11(3): e0151789, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27003759

RESUMEN

Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0-28 days) and young infants (age: 29 days-4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144-150°.


Asunto(s)
Obstrucción de las Vías Aéreas/fisiopatología , Imagen por Resonancia Magnética , Postura/fisiología , Resucitación , Cabeza/fisiología , Humanos , Lactante , Recién Nacido , Sistemas de Manutención de la Vida , Estudios Retrospectivos
10.
Mol Genet Metab ; 117(3): 344-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26750749

RESUMEN

A discrepancy has been identified between numbers of expected and identified patients with homocystinuria due to cystathionine beta-synthase (CBS) deficiency. Patients homozygous for the frequent c.833T>C (p.I278T) are most often responsive to vitamin B6, and can present with a total-homocysteine (tHcy) <100 µM on a normal diet. In Denmark, patients with tHcy <100 µM are not routinely sequenced for CBS(2) mutations. This study investigated the prevalence of CBS mutations and the common methylenetetrahydrofolate reductase (MTHFR) c.677C>T polymorphism in patients with tHcy ≥ 50 µM and the association with clinical manifestations. We studied a cohort of patients with intermediate and severe hyperhomocysteinemia (tHcy ≥ 50 µM) determined between 1996 and 2011. Among the 413 eligible patients, 184 (45%) patients agreed to participate in the present follow-up study. A MTHFR(3)c.677TT genotype was found in 49% of the patients. Eight patients were found to have mutations in CBS(2). Of those, two were homozygous for c.833T>C (p.I278T), and four were compound heterozygous for c.833T>C. One c.833T>C (p.I278T) compound heterozygote was identified by lowering the threshold for sequencing from tHcy at 100 µM to 50 µM. The most prominent clinical presentation among patients with a CBS(2) mutation was thrombosis presenting at a median age of 25 years. In case of arterial or venous thrombosis without any explanation in individuals below 40 years, tHcy should be part of the thrombophilia screening. When tHcy is between 50 and 100 µM genotyping for the MTHFR(3) c.677TT is relevant, and when tHcy >100 µM CBS should be genotyped.


Asunto(s)
Densidad Ósea , Cistationina betasintasa/genética , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Cistationina betasintasa/sangre , Cistationina betasintasa/deficiencia , Dinamarca/epidemiología , Femenino , Estudios de Seguimiento , Genotipo , Heterocigoto , Homocisteína/sangre , Homocistinuria/etiología , Homocistinuria/metabolismo , Homocigoto , Humanos , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/epidemiología , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Persona de Mediana Edad , Polimorfismo Genético , Prevalencia , Tromboembolia/etiología , Adulto Joven
11.
Biol Open ; 4(9): 1154-62, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26276101

RESUMEN

In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL) is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap.

12.
Childs Nerv Syst ; 31(9): 1521-5, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26077597

RESUMEN

PURPOSE: Neonates and infants frequently undergo MRI examinations of the brain or head and neck in spontaneous respiration. This study aims to evaluate the patency of the upper airway and associated risk factors in spontaneously breathing neonates and infants undergoing MRI of head and neck. METHODS: Airway patency was assessed on sagittal and axial MRI images of the head and neck region for neonates and infants retrospectively. Anteroposterior diameters were measured at the soft palate and tongue levels as well as a lateral diameter at the tongue level for the patent airway. Chart review for risk factors was carried out. RESULTS: A total of 831 children between 0 and 12 months of age had an MRI. Eighty-two children with spontaneous ventilation were included. The airway was occluded in 29/82 (35%) of children. Twenty-four out of 29 (83%) children with airway occlusion had a depressed level of consciousness, 7/24 (29%) of whom were sedated with a single dose of benzodiazepine and 17/24 (71%) were on anti-epileptic therapy for an underlying seizure disorder and/or hypoxic ischemic encephalopathy. Forty-three out of 82 (65%) of children had an open airway. The airway diameters (mean ± SD) were 5.9 ± 2 mm (anteroposterior (AP) at soft palate), 7.4 ± 2.9 mm (lateral at soft palate), and 6.3 mm ± 1.6 (AP at dorsum of tongue). CONCLUSION: A significant proportion of spontaneously breathing neonates and infants with hypoxic ischemic encephalopathy or sedation show evidence of airway obstruction during MRI. Careful pre-MRI screening for decision of spontaneous breathing versus artificial airway support during MRI and robust airway monitoring during MRI are required for these vulnerable children.


Asunto(s)
Obstrucción de las Vías Aéreas/patología , Cabeza/patología , Cuello/patología , Obstrucción de las Vías Aéreas/terapia , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Estudios Retrospectivos
13.
J Nutr Biochem ; 26(9): 903-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26025328

RESUMEN

Demand for the vital nutrient choline is high during lactation; however, few studies have examined choline metabolism and requirements in this reproductive state. The present study sought to discern the effects of lactation and varied choline intake on maternal biomarkers of choline metabolism and breast milk choline content. Lactating (n=28) and control (n=21) women were randomized to 480 or 930 mg choline/day for 10-12 weeks as part of a controlled feeding study. During the last 4-6 weeks, 20% of the total choline intake was provided as an isotopically labeled choline tracer (methyl-d9-choline). Blood, urine and breast milk samples were collected for choline metabolite quantification, enrichment measurements, and gene expression analysis of choline metabolic genes. Lactating (vs. control) women exhibited higher (P < .001) plasma choline concentrations but lower (P ≤ .002) urinary excretion of choline metabolites, decreased use of choline as a methyl donor (e.g., lower enrichment of d6-dimethylglycine, P ≤ .08) and lower (P ≤ .02) leukocyte expression of most choline-metabolizing genes. A higher choline intake during lactation differentially influenced breast milk d9- vs. d3-choline metabolite enrichment. Increases (P ≤ .03) were detected among the d3-metabolites, which are generated endogenously via the hepatic phosphatidylethanolamine N-methyltransferase (PEMT), but not among the d9-metabolites generated from intact exogenous choline. These data suggest that lactation induces metabolic adaptations that increase the supply of intact choline to the mammary epithelium, and that extra maternal choline enhances breast milk choline content by increasing supply of PEMT-derived choline metabolites. This trial was registered at clinicaltrials.gov as NCT01127022.


Asunto(s)
Colina/administración & dosificación , Suplementos Dietéticos , Lactancia/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Leche Humana/química , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Adulto , Biomarcadores/sangre , Biomarcadores/orina , Colina/análisis , Colina/sangre , Colina/metabolismo , Estudios de Cohortes , Deuterio , Inducción Enzimática , Femenino , Humanos , Lactancia/sangre , Lactancia/orina , Leucocitos/enzimología , Leucocitos/metabolismo , Hígado/enzimología , Hígado/metabolismo , Glándulas Mamarias Humanas/enzimología , Glándulas Mamarias Humanas/metabolismo , Leche Humana/metabolismo , New York , Fosfatidiletanolamina N-Metiltransferasa/química , Fosfatidiletanolamina N-Metiltransferasa/genética , ARN Mensajero/metabolismo , Ingesta Diaria Recomendada , Adulto Joven
14.
J Nutr ; 145(7): 1507-14, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25995278

RESUMEN

BACKGROUND: Limited data are available from controlled studies on biomarkers of maternal vitamin B-12 status. OBJECTIVE: We sought to quantify the effects of pregnancy and lactation on the vitamin B-12 status response to a known and highly controlled vitamin B-12 intake. METHODS: As part of a 10-12 wk feeding trial, pregnant (26-29 wk gestation; n = 26), lactating (5 wk postpartum; n = 28), and control (nonpregnant, nonlactating; n = 21) women consumed vitamin B-12 amounts of ∼8.6 µg/d [mixed diet (∼6 µg/d) plus a prenatal multivitamin supplement (2.6 µg/d)]. Serum vitamin B-12, holotranscobalamin (bioactive form of vitamin B-12), methylmalonic acid (MMA), and homocysteine were measured at baseline and study-end. RESULTS: All participants achieved adequate vitamin B-12 status in response to the study dose. Compared with control women, pregnant women had lower serum vitamin B-12 (-21%; P = 0.02) at study-end, whereas lactating women had higher (P = 0.04) serum vitamin B-12 throughout the study (+26% at study-end). Consumption of the study vitamin B-12 dose increased serum holotranscobalamin in all reproductive groups (+16-42%; P ≤ 0.009). At study-end, pregnant (vs. control) women had a higher holotranscobalamin-to-vitamin B-12 ratio (P = 0.04) with ∼30% (vs. 20%) of total vitamin B-12 in the bioactive form. Serum MMA increased during pregnancy (+50%; P < 0.001) but did not differ by reproductive state at study-end. Serum homocysteine increased in pregnant women (+15%; P = 0.009) but decreased in control and lactating women (-16-17%; P < 0.001). Despite these changes, pregnant women had ∼20% lower serum homocysteine than the other 2 groups at study-end (P ≤ 0.02). CONCLUSION: Pregnancy and lactation alter vitamin B-12 status in a manner consistent with enhanced vitamin B-12 supply to the child. Consumption of the study vitamin B-12 dose (∼3 times the RDA) increased the bioactive form of vitamin B-12, suggesting that women in these reproductive states may benefit from vitamin B-12 intakes exceeding current recommendations. This trial was registered at clinicaltrials.gov as NCT01127022.


Asunto(s)
Ingestión de Energía , Micronutrientes/administración & dosificación , Vitamina B 12/sangre , Adulto , Biomarcadores/sangre , Lactancia Materna , Colina/administración & dosificación , Colina/sangre , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Voluntarios Sanos , Homocisteína/sangre , Homocisteína/orina , Humanos , Lactancia/sangre , Ácido Metilmalónico/sangre , Periodo Posparto , Embarazo , Ingesta Diaria Recomendada , Vitamina B 12/administración & dosificación , Adulto Joven
16.
Orthopedics ; 38(1): e72-4, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25611425

RESUMEN

Recurrent carpal tunnel syndrome occurs in up to 12% of cases after carpal tunnel release. Recurrent carpal tunnel syndrome is defined as recurrence of classic symptoms confirmed by electrodiagnostic studies after a symptom-free interval of a minimum of 6 months, as opposed to persistent carpal tunnel syndrome, where a symptom-free interval never occurs after carpal tunnel release, which is attributed to incomplete release of the transverse carpal ligament. The most common causes of recurrent carpal tunnel syndrome requiring reoperation are incomplete release of the transverse carpal ligament and scarring of the median nerve to the surrounding structures. Surgical exploration, release of the reconstituted transverse carpal ligament, and freeing of the median nerve from constricting scar will usually result in symptom relief. The authors describe an unusual presentation of recurrent carpal tunnel syndrome with healing of the transverse carpal ligament dorsal to the median nerve, trapping the median nerve in the subcutaneous tissue. Hand surgeons must be aware of this anomalous location when performing revision carpal tunnel release. The surgeon must locate the median nerve proximally in normal tissue before proceeding distally to avoid iatrogenic injury during revision carpal tunnel release.


Asunto(s)
Articulaciones del Carpo/cirugía , Síndrome del Túnel Carpiano/cirugía , Ligamentos Articulares/cirugía , Nervio Mediano/cirugía , Femenino , Humanos , Persona de Mediana Edad , Recurrencia , Reoperación , Resultado del Tratamiento
17.
Environ Microbiol ; 17(12): 4873-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24803319

RESUMEN

Cobalamin and other corrinoids are essential cofactors for many organisms. The majority of microbes with corrinoid-dependent enzymes do not produce corrinoids de novo, and instead must acquire corrinoids produced by other organisms in their environment. However, the profile of corrinoids produced in corrinoid-dependent microbial communities, as well as the exchange and modification of corrinoids among community members have not been well studied. In this study, we applied a newly developed liquid chromatography tandem mass spectrometry-based corrinoid detection method to examine relationships among corrinoids, their lower ligand bases and specific microbial groups in microbial communities containing Dehalococcoides mccartyi that has an obligate requirement for benzimidazole-containing corrinoids for trichloroethene respiration. We found that p-cresolylcobamide ([p-Cre]Cba) and cobalamin were the most abundant corrinoids in the communities. It suggests that members of the family Veillonellaceae are associated with the production of [p-Cre]Cba. The decrease of supernatant-associated [p-Cre]Cba and the increase of biomass-associated cobalamin were correlated with the growth of D. mccartyi by dechlorination. This supports the hypothesis that D. mccartyi is capable of fulfilling its corrinoid requirements in a community through corrinoid remodelling, in this case, by importing extracellular [p-Cre]Cba and 5,6-dimethylbenzimidazole (DMB) (the lower ligand of cobalamin), to produce cobalamin as a cofactor for dechlorination. This study also highlights the role of DMB, the lower ligand produced in all of the studied communities, in corrinoid remodelling. These findings provide novel insights on roles played by different phylogenetic groups in corrinoid production and corrinoid exchange within microbial communities. This study may also have implications for optimizing chlorinated solvent bioremediation.


Asunto(s)
Bencimidazoles/metabolismo , Chloroflexi/metabolismo , Cresoles/metabolismo , Hidrocarburos Clorados/metabolismo , Veillonellaceae/metabolismo , Vitamina B 12/metabolismo , Biodegradación Ambiental , Chloroflexi/crecimiento & desarrollo , Cromatografía Liquida , Ligandos , Consorcios Microbianos/fisiología , Filogenia , Espectrometría de Masas en Tándem , Tricloroetileno/metabolismo
18.
FASEB J ; 28(9): 4044-54, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24891521

RESUMEN

Cystathionine ß-synthase-deficient homocystinuria (HCU) is a serious life-threatening inborn error of sulfur metabolism with poorly understood pathogenic mechanisms. We investigated the effect of HCU on hepatic cysteine oxidation in a transgenic mouse model of the disease. Cysteine dioxygenase (CDO) protein levels were 90% repressed without any change in mRNA levels. Cysteinesulfinic acid decarboxylase (CSAD) was induced at both the mRNA (8-fold) and protein (15-fold) levels. Cysteine supplementation normalized CDO protein levels without reversing the induction of CSAD. Regulatory changes in CDO and CSAD expression were proportional to homocysteine elevation, indicating a possible threshold effect. Hepatic and blood taurine levels in HCU animals were decreased by 21 and 35%, respectively, and normalized by cysteine supplementation. Expression of the cytoplasmic (GOT1) and mitochondrial (GOT2) isoforms of glutamic-oxaloacetic transaminase were repressed in HCU animals by 86 and 30%, respectively. HCU induced regulatory changes in CSAD, CDO, and GOT1 expression were normalized by taurine supplementation, indicating that cysteine is not the only sulfur compound that regulates hepatic cysteine oxidation. Collectively, our results indicate that HCU induces significant alterations of sulfur metabolism with the potential to contribute to pathogenesis and that cysteine and taurine have the potential to serve as adjunctive treatments in this disease.


Asunto(s)
Cistationina betasintasa/fisiología , Cisteína/metabolismo , Homocistinuria/fisiopatología , Hígado/metabolismo , Azufre/metabolismo , Taurina/farmacología , Animales , Western Blotting , Carboxiliasas/genética , Carboxiliasas/metabolismo , Cisteína/química , Cisteína-Dioxigenasa/genética , Cisteína-Dioxigenasa/metabolismo , Suplementos Dietéticos , Femenino , Homocistinuria/tratamiento farmacológico , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Appl Environ Microbiol ; 80(7): 2133-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24463969

RESUMEN

Corrinoids are essential cofactors of reductive dehalogenases in Dehalococcoides mccartyi, an important bacterium in bioremediation, yet sequenced D. mccartyi strains do not possess the complete pathway for de novo corrinoid biosynthesis. Pelosinus sp. and Desulfovibrio sp. have been detected in dechlorinating communities enriched from contaminated groundwater without exogenous cobalamin corrinoid. To investigate the corrinoid-related interactions among key members of these communities, we constructed consortia by growing D. mccartyi strain 195 (Dhc195) in cobalamin-free, trichloroethene (TCE)- and lactate-amended medium in cocultures with Desulfovibrio vulgaris Hildenborough (DvH) or Pelosinus fermentans R7 (PfR7) and with both in tricultures. Only the triculture exhibited sustainable dechlorination and cell growth when a physiological level of 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin, was provided. In the triculture, DvH provided hydrogen while PfR7 provided corrinoids to Dhc195, and the initiation of dechlorination and Dhc195 cell growth was highly dependent on the growth of PfR7. Corrinoid analysis indicated that Dhc195 imported and remodeled the phenolic corrinoids produced by PfR7 into cobalamin in the presence of DMB. Transcriptomic analyses of Dhc195 showed the induction of the CbiZ-dependent corrinoid-remodeling pathway and BtuFCD corrinoid ABC transporter genes during corrinoid salvaging and remodeling. In contrast, another operon annotated to encode a putative iron/cobalamin ABC transporter (DET1174-DET1176) was induced when cobalamin was exogenously provided. Interestingly, a global upregulation of phage-related genes was observed when PfR7 was present. These findings provide insights into both the gene regulation of corrinoid salvaging and remodeling in Dhc195 when it is grown without exogenous cobalamin and microbe-to-microbe interactions in dechlorinating microbial communities.


Asunto(s)
Chloroflexi/crecimiento & desarrollo , Chloroflexi/metabolismo , Corrinoides/metabolismo , Ácido Láctico/metabolismo , Consorcios Microbianos , Bencimidazoles/metabolismo , Cloro/metabolismo , Medios de Cultivo/química , Desulfovibrio vulgaris/crecimiento & desarrollo , Desulfovibrio vulgaris/metabolismo , Fermentación , Hidrógeno/metabolismo , Transcriptoma , Veillonellaceae/crecimiento & desarrollo , Veillonellaceae/metabolismo
20.
Am J Clin Nutr ; 98(6): 1459-67, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24132975

RESUMEN

BACKGROUND: Although biomarkers of choline metabolism are altered by pregnancy, little is known about the influence of human pregnancy on the dynamics of choline-related metabolic processes. OBJECTIVE: This study used stable isotope methodology to examine the effects of pregnancy on choline partitioning and the metabolic activity of choline-related pathways. DESIGN: Healthy third-trimester pregnant (n = 26; initially week 27 of gestation) and nonpregnant (n = 21) women consumed 22% of their total choline intake (480 or 930 mg/d) as methyl-d9-choline for the final 6 wk of a 12-wk feeding study. RESULTS: Plasma d9-betaine:d9-phosphatidylcholine (PC) was lower (P ≤ 0.04) in pregnant than in nonpregnant women, suggesting greater partitioning of choline into the cytidine diphosphate-choline (CDP-choline) PC biosynthetic pathway relative to betaine synthesis during pregnancy. Pregnant women also used more choline-derived methyl groups for PC synthesis via phosphatidylethanolamine N-methyltransferase (PEMT) as indicated by comparable increases in PEMT-PC enrichment in pregnant and nonpregnant women despite unequal (pregnant > nonpregnant; P < 0.001) PC pool sizes. Pregnancy enhanced the hydrolysis of PEMT-PC to free choline as shown by greater (P < 0.001) plasma d3-choline:d3-PC. Notably, d3-PC enrichment increased (P ≤ 0.011) incrementally from maternal to placental to fetal compartments, signifying the selective transfer of PEMT-PC to the fetus. CONCLUSIONS: The enhanced use of choline for PC production via both the CDP-choline and PEMT pathways shows the substantial demand for choline during late pregnancy. Selective partitioning of PEMT-PC to the fetal compartment may imply a unique requirement of PEMT-PC by the developing fetus.


Asunto(s)
Colina/metabolismo , Dieta , Suplementos Dietéticos , Fenómenos Fisiologicos Nutricionales Maternos , Intercambio Materno-Fetal , Embarazo/metabolismo , Adulto , Betaína/sangre , Colina/administración & dosificación , Colina/análogos & derivados , Colina/sangre , Deuterio , Femenino , Sangre Fetal , Humanos , Hidrólisis , Metilación , Fosfatidilcolinas/sangre , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Placenta/metabolismo , Embarazo/sangre , Tercer Trimestre del Embarazo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...