Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38623956

RESUMEN

Actin cytoskeleton plays an important role in various aspects of atherosclerosis, a key driver of ischemic heart disease. Actin-binding protein Profilin1 (Pfn1) is overexpressed in atherosclerotic plaques in human disease, and Pfn1, when partially depleted globally in all cell types, confers atheroprotection in vivo. This study investigates the impact of endothelial cell (EC)-specific partial loss of Pfn1 expression in atherosclerosis development. We utilized mice engineered for conditional heterozygous knockout of the Pfn1 gene in ECs, with atherosclerosis induced by depletion of hepatic LDL receptor by gene delivery of PCSK9 combined with high-cholesterol diet. Our studies show that partial depletion of EC Pfn1 has certain beneficial effects marked by dampening of select pro-atherogenic cytokines (CXCL10 and IL7) with concomitant reduction in cytotoxic T cell abundance but is not sufficient to reduce hyperlipidemia and confer atheroprotection in vivo. In light of these findings, we conclude that atheroprotective phenotype conferred by global Pfn1 haplo-insufficiency requires contributions of additional cell types that are relevant for atherosclerosis progression.

2.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38106044

RESUMEN

Actin cytoskeleton plays an important role in various aspects of atherosclerosis, a key driver of ischemic heart disease. Actin-binding protein Profilin1 (Pfn1) is overexpressed in atherosclerotic plaques in human disease, and Pfn1, when partially depleted globally in all cell types, confers atheroprotection in vivo . This study investigates the impact of endothelial cell (EC)-specific partial loss of Pfn1 expression in atherosclerosis development. We utilized mice engineered for conditional heterozygous knockout of the Pfn1 gene in ECs, with atherosclerosis induced by depletion of hepatic LDL receptor by gene delivery of PCSK9 combined with high-cholesterol diet. Our studies show that partial depletion of EC Pfn1 has certain beneficial effects marked by dampening of select pro-atherogenic cytokines (CXCL10 and IL7) with concomitant reduction in cytotoxic T cell abundance but is not sufficient to reduce hyperlipidemia and confer atheroprotection in vivo . In light of these findings, we conclude that atheroprotective phenotype conferred by global Pfn1 haplo-insufficiency requires contributions of additional cell types that are relevant for atherosclerosis progression.

3.
PNAS Nexus ; 2(10): pgad305, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37781098

RESUMEN

Actin-binding protein Profilin1 is an important regulator of actin cytoskeletal dynamics in cells and critical for embryonic development in higher eukaryotes. The objective of the present study was to examine the consequence of loss-of-function of Pfn1 in vascular endothelial cells (ECs) in vivo. We utilized a mouse model engineered for tamoxifen-inducible biallelic inactivation of the Pfn1 gene selectively in EC (Pfn1EC-KO). Widespread deletion of EC Pfn1 in adult mice leads to severe health complications presenting overt pathologies (endothelial cell death, infarct, and fibrosis) in major organ systems and evidence for inflammatory infiltrates, ultimately compromising the survival of animals within 3 weeks of gene ablation. Mice deficient in endothelial Pfn1 exhibit selective bias toward the proinflammatory myeloid-derived population of immune cells, a finding further supported by systemic elevation of proinflammatory cytokines. We further show that triggering Pfn1 depletion not only directly upregulates proinflammatory cytokine/chemokine gene expression in EC but also potentiates the paracrine effect of EC on proinflammatory gene expression in macrophages. Consistent with these findings, we provide further evidence for increased activation of Interferon Regulatory Factor 7 (IRF7) and STAT1 in EC when depleted of Pfn1. Collectively, these findings for the first time demonstrate a prominent immunological consequence of loss of endothelial Pfn1 and an indispensable role of endothelial Pfn1 in mammalian survival unlike tolerable phenotypes of Pfn1 loss in other differentiated cell types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA