Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Phys ; 48(1): e1-e30, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33078858

RESUMEN

Proton therapy is an expanding radiotherapy modality in the United States and worldwide. With the number of proton therapy centers treating patients increasing, so does the need for consistent, high-quality clinical commissioning practices. Clinical commissioning encompasses the entire proton therapy system's multiple components, including the treatment delivery system, the patient positioning system, and the image-guided radiotherapy components. Also included in the commissioning process are the x-ray computed tomography scanner calibration for proton stopping power, the radiotherapy treatment planning system, and corresponding portions of the treatment management system. This commissioning report focuses exclusively on intensity-modulated scanning systems, presenting details of how to perform the commissioning of the proton therapy and ancillary systems, including the required proton beam measurements, treatment planning system dose modeling, and the equipment needed.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Calibración , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
2.
J Appl Clin Med Phys ; 11(2): 3015, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20592691

RESUMEN

Large area, shallow fields are well suited to proton therapy. However, due to beam production limitations, such volumes typically require multiple matched fields. This is problematic due to the relatively narrow beam penumbra at shallow depths compared to electron and photon beams. Therefore, highly accurate dose planning and delivery is required. As the dose delivery includes shifting the patient for matched fields, accuracy at the 1-2 millimeter level in patient positioning is also required. This study investigates the dosimetric accuracy of such proton field matching by an innovative robotic patient positioner system (RPPS). The dosimetric comparisons were made between treatment planning system calculations, radiographic film and ionization chamber measurements. The results indicated good agreement amongst the methods and suggest that proton field matching by a RPPS is accurate and efficient.


Asunto(s)
Neoplasias/radioterapia , Posicionamiento del Paciente , Terapia de Protones , Radiometría , Radioterapia/instrumentación , Robótica , Humanos , Dosificación Radioterapéutica
3.
Med Phys ; 36(6): 2297-308, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19610318

RESUMEN

In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to +/-21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than +/-3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.


Asunto(s)
Radiometría/instrumentación , Radioterapia Conformacional/instrumentación , Diseño Asistido por Computadora , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Terapia de Protones , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
4.
Med Phys ; 36(2): 634-41, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19292004

RESUMEN

Calculations of dose per monitor unit (D/MU) are required in addition to measurements to increase patient safety in the clinical practice of proton radiotherapy. As in conventional photon and electron therapy, the D/MU depends on several factors. This study focused on obtaining range and modulation dependence factors used in D/MU calculations for the double scattered proton beam line at the Midwest Proton Radiotherapy Institute. Three dependencies on range and one dependency on modulation were found. A carefully selected set of measurements was performed to discern these individual dependencies. Dependencies on range were due to: (1) the stopping power of the protons passing through the monitor chamber; (2) the reduction of proton fluence due to nuclear interactions within the patient; and (3) the variation of proton fluence passing through the monitor chamber due to different source-to-axis distances (SADs) for different beam ranges. Different SADs are produced by reconfigurations of beamline elements to provide different field sizes and ranges. The SAD effect on the D/MU varies smoothly as the beam range is varied, except at the beam range for which the first scatterers are exchanged and relocated to accommodate low and high beam ranges. A geometry factor was devised to model the SAD variation effect on the D/MU. The measured D/MU variation as a function of range can be predicted within 1% using the three modeled dependencies on range. Investigation of modulated beams showed that an analytical formula can predict the D/MU dependency as a function of modulation to within 1.5%. Special attention must be applied when measuring the D/MU dependence on modulation to avoid interplay between range and SAD effects.


Asunto(s)
Terapia de Protones , Dosis de Radiación , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA