Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Argent Microbiol ; 56(3): 232-240, 2024.
Artículo en Español | MEDLINE | ID: mdl-39218718

RESUMEN

Lysinibacillus sphaericus is a bacterium that, along with Bacillus thuringiensis var. israelensis, is considered the best biological insecticide for controlling mosquito larvae and an eco-friendly alternative to chemical insecticides. It depends on peptidic molecules such as N-acetylglucosamine to obtain carbon sources and possesses a phosphotransferase system (PTS) for their incorporation. Some strains carry S-layer proteins, whose involvement in metal retention and larvicidal activity against disease-carrying mosquitoes has been demonstrated. Alterations in the amino sugar incorporation system could affect the protein profile and functionality. Strain ASB13052 and the isogenic mutant in the ptsH gene, which is predominant in the PTS signaling pathway, were used in this study. For the first time, the presence of N-glycosylated S-layer proteins was confirmed in both strains, with a variation in their molecular weight pattern depending on the growth phase. In the exponential phase, an S-layer protein greater than 130 kDa was found in the ptsH mutant, which was absent in the wild-type strain. The mutant strain exhibited altered and incomplete low quality sporulation processes. Hemolysis analysis, associated with larvicidal activity, showed that the ptsH mutant has higher lytic efficiency, correlating with the high molecular weight protein. The results allow us to propose the potential effects that arise as a result of the absence of amino sugar transport on hemolytic activity, S-layer isoforms, and the role of N-acetylglucosamine in larvicidal activity.


Asunto(s)
Acetilglucosamina , Bacillaceae , Glicoproteínas de Membrana , Esporas Bacterianas , Bacillaceae/genética , Bacillaceae/metabolismo , Acetilglucosamina/metabolismo , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/crecimiento & desarrollo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Hemólisis/efectos de los fármacos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico
2.
World J Microbiol Biotechnol ; 37(4): 61, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33719024

RESUMEN

In lactobacilli, CcpA is known to modulate the expression of genes involved in sugar metabolism, stress response and aerobic adaptation. This study aimed to evaluate a ccpA mutant of Lacticaseibacillus casei BL23 to increase lactic acid production using cheese whey. The ccpA derivative (BL71) showed better growth than the L. casei wild-type in the whey medium. In a stirred tank reactor, at 48 h, lactate production by BL71 was eightfold higher than that by BL23. In batch fermentations, the final values reached were 44.23 g L-1 for BL71 and 27.58 g L-1 for BL23. Due to a decrease in the delay of lactate production in the mutant, lactate productivity increased from 0.17 g (L.h)-1 with BL23 to 0.80 g (L.h)-1 with BL71. We found that CcpA would play additional roles in nitrogen metabolism by the regulation of the proteolytic system. BL71 displayed higher activity of the PepX, PepQ and PrtP enzymes than BL23. Analysis of prtP expression confirmed this deregulation in BL71. Promoter analysis of the prtP gene revealed CcpA binding sites with high identity to the cre consensus sequence and the interaction of CcpA with this promoter was confirmed in vitro. We postulate that deregulation of the proteolytic system in BL71 allows a better exploitation of nitrogen resources in cheese whey, resulting in enhanced fermentation capacity. Therefore, the ccpA gene could be a good target for future technological developments aimed at effective and inexpensive lactate production from dairy industrial wastes.


Asunto(s)
Queso , Medios de Cultivo/química , Ácido Láctico/metabolismo , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Suero Lácteo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Metabolismo de los Hidratos de Carbono , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Industria Lechera , Fermentación , Concentración de Iones de Hidrógeno , Residuos Industriales
3.
World J Microbiol Biotechnol ; 36(11): 169, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043388

RESUMEN

The surface-layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling subunits, non-covalently bound to the most outer cell wall envelope, which constitutes up to 20% of the total cell protein content. These attributes make S-layer proteins an excellent anchor for the development of microbial cell-surface display systems. In L. acidophilus, the S-layer is formed predominantly by the protein SlpA. We have previously shown that the C-terminal domain of SlpA is responsible for the cell wall anchorage on L. acidophilus ATCC 4356. In the present study, we evaluated the C-terminal domain of SlpA of L. acidophilus ATCC 4356 as a potential anchor domain to display functional proteins on the surface of non-genetically modified lactic acid bacteria (LAB). To this end, green fluorescent protein (GFP)-CTSlpA was firstly produced in Escherichia coli and the recombinant proteins were able to spontaneously bind to the cell wall of LAB in a binding assay. GFP was successfully displayed on the S-layer stripped surface of L. acidophilus. Both the binding stability and cell survival of L. acidophilus decorated with the recombinant protein were then studied in simulated gastrointestinal conditions. Furthermore, NaCl was tested as a safer alternative to LiCl for S-layer removal. This study presents the development of a protein delivery platform involving L. acidophilus, a microorganism generally regarded as safe, which utilizes the contiguous, non-covalently attached S-layer at the cell surface of the bacterium without introducing any genetic modification.


Asunto(s)
Membrana Celular/química , Lactobacillales/metabolismo , Lactobacillus acidophilus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/química , Clonación Molecular , Medios de Cultivo/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Viabilidad Microbiana , Microscopía Electrónica de Transmisión , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
4.
PLoS One ; 9(10): e111114, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25354162

RESUMEN

Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity.


Asunto(s)
Aedes/efectos de los fármacos , Bacillaceae/química , Culex/efectos de los fármacos , Glicoproteínas de Membrana/toxicidad , Secuencia de Aminoácidos , Animales , Quitina/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/farmacología , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Esporas Bacterianas/química
5.
J Microbiol Biotechnol ; 21(2): 147-53, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21364296

RESUMEN

Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified Slayers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of Ca2+ and Zn2+, but not of Cd2+, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of Slayer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.


Asunto(s)
Bacillus/metabolismo , Glicoproteínas de Membrana/metabolismo , Metales/metabolismo , Cationes Bivalentes/metabolismo , Quelantes/metabolismo , Unión Proteica , Esporas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA