Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neuroophthalmol ; 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665646

RESUMEN

BACKGROUND: Establishing a molecular diagnosis of mitochondrial diseases due to pathogenic mitochondrial DNA (mtDNA) variants can be difficult because of varying levels of tissue heteroplasmy, and identifying these variants is important for clinical management. Here, we present clinical and molecular findings in 8 adult patients with classical features of mitochondrial ophthalmologic and/or muscle disease and multiple mtDNA deletions isolated to muscle. METHODS: The patients were identified via a retrospective review of patients seen in both a tertiary ophthalmology center and a genetics clinic with a clinical diagnosis of chronic progressive external ophthalmoplegia, optic nerve abnormalities, and/or mitochondrial myopathy. Age at onset of symptoms ranged from 18 to 61 years. Ocular manifestations included bilateral optic neuropathy in one patient, bilateral optic disc cupping without optic neuropathy in 2 patients, ptosis in 4 patients, and ocular motility deficits in 2 patients. Five patients had generalized weakness. RESULTS: Pathogenic variants in mtDNA were not found in the blood or buccal sample from any patient, but 7 of 8 patients had multiple mtDNA deletions identified in muscle tissue. One patient had a single mtDNA deletion identified in the muscle. Heteroplasmy was less than 15% for all of the identified deletions, with the exception of one deletion that had a heteroplasmy of 50%-60%. None of the patients were found to have a nuclear gene variant known to be associated with mitochondrial DNA maintenance. CONCLUSIONS: mtDNA deletions were identified in adult patients with ophthalmologic and/or musle abnormalities and may underlie their clinical presentations.

2.
J Inherit Metab Dis ; 46(2): 326-334, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36719165

RESUMEN

Congenital disorders of glycosylation (CDG) and Niemann-Pick type C (NPC) disease are inborn errors of metabolism that can both present with infantile-onset severe liver disease and other multisystemic manifestations. Plasma bile acid and N-palmitoyl-O-phosphocholineserine (PPCS) are screening biomarkers with proposed improved sensitivity and specificity for NPC. We report an infant with ATP6AP1-CDG who presented with cholestatic liver failure and elevated plasma oxysterols and bile acid, mimicking NPC clinically and biochemically. On further investigation, PPCS, but not the bile acid derivative N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl) glycine (TCG), were elevated in plasma samples from individuals with ATP6AP1-, ALG1-, ALG8-, and PMM2-CDG. These findings highlight the importance of keeping CDG within the diagnostic differential when evaluating children with early onset severe liver disease and elevated bile acid or PPCS to prevent delayed diagnosis and treatment.


Asunto(s)
Trastornos Congénitos de Glicosilación , Enfermedad de Niemann-Pick Tipo C , Oxiesteroles , ATPasas de Translocación de Protón Vacuolares , Lactante , Niño , Humanos , Glicosilación , Ácidos y Sales Biliares , Hidrolasas
3.
Ann Clin Transl Neurol ; 9(12): 2025-2035, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36256512

RESUMEN

Bi-allelic variants in Iron-Sulfur Cluster Scaffold (NFU1) have previously been associated with multiple mitochondrial dysfunctions syndrome 1 (MMDS1) characterized by early-onset rapidly fatal leukoencephalopathy. We report 19 affected individuals from 10 independent families with ultra-rare bi-allelic NFU1 missense variants associated with a spectrum of early-onset pure to complex hereditary spastic paraplegia (HSP) phenotype with a longer survival (16/19) on one end and neurodevelopmental delay with severe hypotonia (3/19) on the other. Reversible or irreversible neurological decompensation after a febrile illness was common in the cohort, and there were invariable white matter abnormalities on neuroimaging. The study suggests that MMDS1 and HSP could be the two ends of the NFU1-related phenotypic continuum.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Fenotipo , Paraplejía Espástica Hereditaria/genética , Mutación Missense , Alelos , Hierro/metabolismo , Proteínas Portadoras/genética
4.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055214

RESUMEN

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Asunto(s)
Proteínas de Unión al Calcio , Enfermedades Mitocondriales , Proteínas de Unión al Calcio/genética , Homeostasis/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistema Nervioso/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Clin Genet ; 100(4): 412-429, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216016

RESUMEN

ZMYND11 is the critical gene in chromosome 10p15.3 microdeletion syndrome, a syndromic cause of intellectual disability. The phenotype of ZMYND11 variants has recently been extended to autism and seizures. We expand on the epilepsy phenotype of 20 individuals with pathogenic variants in ZMYND11. We obtained clinical descriptions of 16 new and nine published individuals, plus detailed case history of two children. New individuals were identified through GeneMatcher, ClinVar and the European Network for Therapies in Rare Epilepsy (NETRE). Genetic evaluation was performed using gene panels or exome sequencing; variants were classified using American College of Medical Genetics (ACMG) criteria. Individuals with ZMYND11 associated epilepsy fell into three groups: (i) atypical benign partial epilepsy or idiopathic focal epilepsy (n = 8); (ii) generalised epilepsies/infantile epileptic encephalopathy (n = 4); (iii) unclassified (n = 8). Seizure prognosis ranged from spontaneous remission to drug resistant. Neurodevelopmental deficits were invariable. Dysmorphic features were variable. Variants were distributed across the gene and mostly de novo with no precise genotype-phenotype correlation. ZMYND11 is one of a small group of chromatin reader genes associated in the pathogenesis of epilepsy, and specifically ABPE. More detailed epilepsy descriptions of larger cohorts and functional studies might reveal genotype-phenotype correlation. The epileptogenic mechanism may be linked to interaction with histone H3.3.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Epilepsia/diagnóstico , Epilepsia/genética , Variación Genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Adolescente , Adulto , Alelos , Sustitución de Aminoácidos , Niño , Preescolar , Bases de Datos Factuales , Electroencefalografía , Epilepsia/terapia , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven
6.
Genet Med ; 23(8): 1514-1521, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33846581

RESUMEN

PURPOSE: Reports have questioned the dogma of exclusive maternal transmission of human mitochondrial DNA (mtDNA), including the recent report of an admixture of two mtDNA haplogroups in individuals from three multigeneration families. This was interpreted as being consistent with biparental transmission of mtDNA in an autosomal dominant-like mode. The authenticity and frequency of these findings are debated. METHODS: We retrospectively analyzed individuals with two mtDNA haplogroups from 2017 to 2019 and selected four families for further study. RESULTS: We identified this phenomenon in 104/27,388 (approximately 1/263) unrelated individuals. Further study revealed (1) a male with two mitochondrial haplogroups transmits only one haplogroup to some of his offspring, consistent with nuclear transmission; (2) the heteroplasmy level of paternally transmitted variants is highest in blood, lower in buccal, and absent in muscle or urine of the same individual, indicating it is inversely correlated with mtDNA content; and (3) paternally transmitted apparent large-scale mtDNA deletions/duplications are not associated with a disease phenotype. CONCLUSION: These findings strongly suggest that the observed mitochondrial haplogroup of paternal origin resulted from coamplification of rare, concatenated nuclear mtDNA segments with genuine mtDNA during testing. Evaluation of additional specimen types can help clarify the clinical significance of the observed results.


Asunto(s)
ADN Mitocondrial , Mitocondrias , ADN Mitocondrial/genética , Haplotipos , Humanos , Masculino , Mitocondrias/genética , Fenotipo , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...