Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chromosome Res ; 21(2): 101-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23580138

RESUMEN

The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.


Asunto(s)
Autoantígenos/genética , Proteínas Cromosómicas no Histona/genética , Histonas/genética , Autoantígenos/metabolismo , Centrómero , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Humanos , Cinetocoros , Esclerodermia Sistémica/genética , Terminología como Asunto
2.
Artículo en Inglés | MEDLINE | ID: mdl-21289046

RESUMEN

RNA interference (RNAi) is a conserved silencing mechanism whereby double-strand RNA induces specific down-regulation of homologous sequences. In the fission yeast Schizosaccharomyces pombe, centromeric heterochromatin assembly is an RNAi-dependent process. Noncoding RNAs transcribed from pericentromeric repeat sequences are processed into short interfering RNAs (siRNAs) that direct the Argonaute-containing RNA-induced transcriptional silencing (RITS) effector complex to homologous nascent transcripts. RITS is required for H3K9 methylation by the histone methyltransferase (HMT) Clr4; conversely, H3K9 methylation can attract RITS to chromatin via binding of the chromodomain protein Chp1. This codependency has hampered dissection of the order of events and mechanisms of cross talk between the RNAi and chromatin modification machineries. To tackle this problem, we have developed systems that reconstitute heterochromatin at a euchromatic locus, using either hairpin triggers or DNA-tethered chromatin-modifying complexes. These systems reveal that RNAi is sufficient to promote heterochromatin assembly in cis and that direct recruitment of the HMT Clr4 can bypass the role of RNAi in heterochromatin assembly. We have also characterized a new pathway component, Stc1, that translates the RNAi signal into chromatin marks. We discuss the implications of these findings for our understanding of the mechanism and function of RNAi-directed heterochromatin assembly at centromeres.


Asunto(s)
Centrómero/metabolismo , Heterocromatina/metabolismo , Interferencia de ARN , Heterocromatina/química , Conformación de Ácido Nucleico , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
Science ; 294(5551): 2539-42, 2001 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-11598266

RESUMEN

Centromeres are heterochromatic in many organisms, but the mitotic function of this silent chromatin remains unknown. During cell division, newly replicated sister chromatids must cohere until anaphase when Scc1/Rad21-mediated cohesion is destroyed. In metazoans, chromosome arm cohesins dissociate during prophase, leaving centromeres as the only linkage before anaphase. It is not known what distinguishes centromere cohesion from arm cohesion. Fission yeast Swi6 (a Heterochromatin protein 1 counterpart) is a component of silent heterochromatin. Here we show that this heterochromatin is specifically required for cohesion between sister centromeres. Swi6 is required for association of Rad21-cohesin with centromeres but not along chromosome arms and, thus, acts to distinguish centromere from arm cohesion. Therefore, one function of centromeric heterochromatin is to attract cohesin, thereby ensuring sister centromere cohesion and proper chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular , Centrómero/metabolismo , Proteínas Fúngicas/metabolismo , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Factores de Transcripción/metabolismo , Centrómero/fisiología , Cromátides/metabolismo , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Cromosomas Fúngicos/metabolismo , Proteínas Fúngicas/genética , Hibridación Fluorescente in Situ , Metafase , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Transcripción Genética , Cohesinas
5.
EMBO J ; 20(11): 2857-66, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11387218

RESUMEN

In the fission yeast Schizosaccharomyces pombe, transcriptional silencing at the mating-type region, centromeres and telomeres is epigenetically controlled, and results from the assembly of higher order chromatin structures. Chromatin proteins associated with these silenced loci are believed to serve as molecular bookmarks that help promote inheritance of the silenced state during cell division. Specifically, a chromodomain protein Swi6 is believed to be an important determinant of the epigenetic imprint. Here, we show that a mutation in DNA polymerase alpha (pol(alpha)) affects Swi6 localization at the mating-type region and causes a 45-fold increase in spontaneous transition from the silenced epigenetic state to the expressed state. We also demonstrate that pol(alpha) mutant cells are defective in Swi6 localization at centromeres and telomeres. Genetic analysis suggests that Polalpha and Swi6 are part of the same silencing pathway. Interestingly, we found that Swi6 directly binds to Pol(alpha) in vitro. Moreover, silencing-defective mutant Pol(alpha) displays reduced binding to Swi6 protein. This work indicates involvement of a DNA replication protein, Pol(alpha), in heterochromatin assembly and inheritance of epigenetic chromatin structures.


Asunto(s)
ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Secuencia Conservada , ADN Polimerasa I/química , Regulación Fúngica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Mapeo Restrictivo , Schizosaccharomyces/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
6.
Nature ; 410(6824): 120-4, 2001 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11242054

RESUMEN

Heterochromatin protein 1 (HP1) is localized at heterochromatin sites where it mediates gene silencing. The chromo domain of HP1 is necessary for both targeting and transcriptional repression. In the fission yeast Schizosaccharomyces pombe, the correct localization of Swi6 (the HP1 equivalent) depends on Clr4, a homologue of the mammalian SUV39H1 histone methylase. Both Clr4 and SUV39H1 methylate specifically lysine 9 of histone H3 (ref. 6). Here we show that HP1 can bind with high affinity to histone H3 methylated at lysine 9 but not at lysine 4. The chromo domain of HP1 is identified as its methyl-lysine-binding domain. A point mutation in the chromo domain, which destroys the gene silencing activity of HP1 in Drosophila, abolishes methyl-lysine-binding activity. Genetic and biochemical analysis in S. pombe shows that the methylase activity of Clr4 is necessary for the correct localization of Swi6 at centromeric heterochromatin and for gene silencing. These results provide a stepwise model for the formation of a transcriptionally silent heterochromatin: SUV39H1 places a 'methyl marker' on histone H3, which is then recognized by HP1 through its chromo domain. This model may also explain the stable inheritance of the heterochromatic state.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metiltransferasas , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Fúngicas/metabolismo , N-Metiltransferasa de Histona-Lisina , Humanos , Metilación , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo
7.
EMBO J ; 20(1-2): 210-21, 2001 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11226171

RESUMEN

DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) in mammalian cells requires the Ku70-Ku80 heterodimer, the DNA-PK catalytic subunit DNA-PKcs, as well as DNA ligase IV and Xrcc4. NHEJ of plasmid DSBs in Saccharomyces cerevisiae requires Ku, Xrcc4 and DNA ligase IV, as well as Mre11, Rad50, Xrs2 and DNA damage checkpoint proteins. Saccharomyces cerevisiae Ku is also required for telomere length maintenance and transcriptional silencing. We have characterized NHEJ in Schizosaccharomyces pombe using an extrachromosomal assay and find that, as anticipated, it is Ku70 and DNA ligase IV dependent. Unexpectedly, we find that Rad32, Rad50 (the S.pombe homologues of Mre11 and Rad50, respectively) and checkpoint proteins are not required for NHEJ. Furthermore, although S.pombe Ku70 is required for maintenance of telomere length, it is dispensable for transcriptional silencing at telomeres and is located throughout the nucleus rather than concentrated at the telomeres. Together, these results provide insight into the mechanism of NHEJ and contrast significantly with recent studies in S.cerevisiae.


Asunto(s)
Antígenos Nucleares , Daño del ADN , ADN Helicasas , ADN Ligasas/metabolismo , Reparación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Animales , Secuencia de Bases , Bleomicina/farmacología , Núcleo Celular/genética , Núcleo Celular/fisiología , ADN Ligasa (ATP) , ADN de Hongos/metabolismo , Rayos gamma , Silenciador del Gen , Autoantígeno Ku , Mamíferos , Datos de Secuencia Molecular , Mapeo Restrictivo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/efectos de la radiación , Telómero/genética , Telómero/fisiología , Temperatura , Factores de Transcripción/metabolismo
8.
J Cell Sci ; 113 Pt 23: 4177-91, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11069763

RESUMEN

The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP-(&agr;)2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force.


Asunto(s)
Anafase/fisiología , Segregación Cromosómica/genética , Cromosomas Fúngicos/fisiología , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Huso Acromático/genética , Núcleo Celular/fisiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes , Indicadores y Reactivos/metabolismo , Cinetocoros/fisiología , Proteínas Luminiscentes/genética , Meiosis/fisiología , Mitosis/fisiología , Mutagénesis/fisiología , Schizosaccharomyces/citología , Factores de Transcripción/genética
9.
Curr Biol ; 10(9): 517-25, 2000 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-10801440

RESUMEN

BACKGROUND: Proteins such as HP1, found in fruit flies and mammals, and Swi6, its fission yeast homologue, carry a chromodomain (CD) and a chromo shadow domain (CSD). These proteins are required to form functional transcriptionally silent centromeric chromatin, and their mutation leads to chromosome segregation defects. CSDs have only been found in tandem in proteins containing the related CD. Most HP1-interacting proteins have been found to associate through the CSD and many of these ligands contain a conserved pentapeptide motif. RESULTS: The 1.9 A crystal structure of the Swi6 CSD is presented here. This reveals a novel dimeric structure that is distinct from the previously reported monomeric nuclear magnetic resonance (NMR) structure of the CD from the mouse modifier 1 protein (MoMOD1, also known as HP1beta or M31). A prominent pit with a non-polar base is generated at the dimer interface, and is commensurate with binding an extended pentapeptide motif. Sequence alignments based on this structure highlight differences between CDs and CSDs that are superimposed on a common structural core. The analyses also revealed a previously unrecognised circumferential hydrophobic sash around the surface of the CD structure. CONCLUSIONS: Dimerisation through the CSD of HP1-like proteins results in the simultaneous formation of a putative protein-protein interaction pit, providing a potential means of targeting CSD-containing proteins to particular chromatin sites.


Asunto(s)
Proteínas Fúngicas/química , Conformación Proteica , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Homólogo de la Proteína Chromobox 5 , Dimerización , Proteínas Fúngicas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Pliegue de Proteína , Schizosaccharomyces/química , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo
10.
Curr Opin Cell Biol ; 12(3): 308-19, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10801468

RESUMEN

On monocentric chromosomes the centromere is the chromosomal site at which the kinetochore complex is assembled. This complex mediates the attachment and movement of chromosomes along spindle microtubules. The centromere is usually the last site to retain cohesion between sister centromeres. The location of the main sensor for defective spindle assembly at the kinetochore allows the release of this cohesion, and thus progression through mitosis, to be held in check until key events have been completed. The intricate nature of the centromere-kinetochore complexes and the events they co-ordinate and react to is presently being dissected by studies in several organisms. In particular, several new kinetochore proteins have been identified in many organisms over the last year.


Asunto(s)
Centrómero/fisiología , Cromosomas/fisiología , Adhesividad , Animales , Cromatina/fisiología , Proteínas Fúngicas/fisiología , Humanos , Cinetocoros/fisiología , Cinetocoros/ultraestructura , Meiosis/fisiología , Microtúbulos/fisiología , Mitosis/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología
11.
Genes Dev ; 14(7): 783-91, 2000 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-10766735

RESUMEN

Fission yeast (Schizosaccharomyces pombe) centromeres are composed of large (40-100 kb) inverted repeats that display heterochromatic features, thus providing a good model for higher eukaryotic centromeres. The association of three proteins that mediate region-specific silencing across centromere 1 has been mapped by quantitative chromatin immunoprecipitation. Swi6 and Chp1 are confined to the flanking outer repeats and Swi6 can spread across at least 3 kb of extraneous chromatin in cen1. In contrast, Mis6 coats the inner repeats and central core. tRNA genes demarcate this transition zone. These analyses clearly define two distinct domains within this complex centromere which interact with different proteins.


Asunto(s)
Centrómero/fisiología , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/fisiología , Proteínas de Ciclo Celular/metabolismo , Centrómero/genética , Centrómero/ultraestructura , Mapeo Cromosómico , ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Genes Fúngicos , Heterocromatina/genética , Heterocromatina/fisiología , Heterocromatina/ultraestructura , ARN de Transferencia/genética , Secuencias Repetitivas de Ácidos Nucleicos , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestructura , Factores de Transcripción/metabolismo
12.
Genetics ; 153(3): 1153-69, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10545449

RESUMEN

In the fission yeast Schizosaccharomyces pombe genes are transcriptionally silenced when placed within centromeres, within or close to the silent mating-type loci or adjacent to telomeres. Factors required to maintain mating-type silencing also affect centromeric silencing and chromosome segregation. We isolated mutations that alleviate repression of marker genes in the inverted repeats flanking the central core of centromere I. Mutations csp1 to 13 (centromere: suppressor of position effect) defined 12 loci. Ten of the csp mutants have no effect on mat2/3 or telomere silencing. All csp mutants allow some expression of genes in the centromeric flanking repeat, but expression in the central core is undetectable. Consistent with defective centromere structure and function, chromosome loss rates are elevated in all csp mutants. Mutants csp1 to 6 are temperature-sensitive lethal and csp3 and csp6 cells are defective in mitosis at 36 degrees. csp7 to 13 display a high incidence of lagging chromosomes on late anaphase spindles. Thus, by screening for mutations that disrupt silencing in the flanking region of a fission yeast centromere a novel collection of mutants affecting centromere architecture and chromosome segregation has been isolated.


Asunto(s)
Centrómero/genética , Cromosomas Fúngicos/genética , Schizosaccharomyces/genética , Transcripción Genética , ADN de Hongos/genética , Electroforesis en Gel de Campo Pulsado , Regulación Fúngica de la Expresión Génica , Marcadores Genéticos , Genotipo , Mutagénesis , ARN de Hongos/genética , Secuencias Repetitivas de Ácidos Nucleicos , Schizosaccharomyces/citología , Schizosaccharomyces/crecimiento & desarrollo , Supresión Genética
13.
Mol Biol Cell ; 10(10): 3171-86, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10512858

RESUMEN

Although silencing is a significant form of transcriptional regulation, the functional and mechanistic limits of its conservation have not yet been established. We have identified the Schizosaccharomyces pombe hst4(+) gene as a member of the SIR2/HST silencing gene family that is defined in organisms ranging from bacteria to humans. hst4Delta mutants grow more slowly than wild-type cells and have abnormal morphology and fragmented DNA. Mutant strains show decreased silencing of reporter genes at both telomeres and centromeres. hst4(+) appears to be important for centromere function as well because mutants have elevated chromosome-loss rates and are sensitive to a microtubule-destabilizing drug. Consistent with a role in chromatin structure, Hst4p localizes to the nucleus and appears concentrated in the nucleolus. hst4Delta mutant phenotypes, including growth and silencing phenotypes, are similar to those of the Saccharomyces cerevisiae HSTs, and at a molecular level, hst4(+) is most similar to HST4. Furthermore, hst4(+) is a functional homologue of S. cerevisiae HST3 and HST4 in that overexpression of hst4(+) rescues the temperature-sensitivity and telomeric silencing defects of an hst3Delta hst4Delta double mutant. These results together demonstrate that a SIR-like silencing mechanism is conserved in the distantly related yeasts and is likely to be found in other organisms from prokaryotes to mammals.


Asunto(s)
Centrómero/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Silenciador del Gen , Histona Desacetilasas , Schizosaccharomyces/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae , Transactivadores/genética , Clonación Molecular , Proteínas de Unión al ADN/química , Técnica del Anticuerpo Fluorescente , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Microscopía de Contraste de Fase , Mutación , Fenotipo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/crecimiento & desarrollo , Alineación de Secuencia , Sirtuina 2 , Sirtuinas , Telómero/genética , Transactivadores/química
14.
Mol Cell Biol ; 19(3): 2351-65, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10022921

RESUMEN

Tf1 is a long terminal repeat (LTR)-containing retrotransposon that propagates within the fission yeast Schizosaccharomyces pombe. LTR-retrotransposons possess significant similarity to retroviruses and therefore serve as retrovirus models. To determine what features of the host cell are important for the proliferation of this class of retroelements, we screened for mutations in host genes that reduced the transposition activity of Tf1. We report here the isolation and characterization of pst1(+), a gene required for Tf1 transposition. The predicted amino acid sequence of Pst1p possessed high sequence homology with the Sin3 family of proteins, known for their interaction with histone deacetylases. However, unlike the SIN3 gene of Saccharomyces cerevisiae, pst1(+) is essential for cell viability. Immunofluorescence microscopy indicated that Pst1p was localized in the nucleus. Consistent with the critical role previously reported for Sin3 proteins in the histone acetylation process, we found that the growth of the strain with the pst1-1 allele was supersensitive to the specific histone deacetylase inhibitor trichostatin A. However, our analysis of strains with the pst1-1 mutation was unable to detect any changes in the acetylation of specific lysines of histones H3 and H4 as measured in bulk chromatin. Interestingly, the pst1-1 mutant strain produced wild-type levels of Tf1-encoded proteins and cDNA, indicating that the defect in transposition occurred after reverse transcription. The results of immunofluorescence microscopy showed that the nuclear localization of the Tf1 capsid protein was disrupted in the strain with the pst1-1 mutation, indicating an important role of pst1(+) in modulating the nuclear import of Tf1 virus-like particles.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Represoras/genética , Retroelementos , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/metabolismo , Hemaglutininas , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Datos de Secuencia Molecular , Mutagénesis , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe , Factores de Transcripción/metabolismo
15.
Nucleic Acids Res ; 26(22): 5052-60, 1998 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-9801299

RESUMEN

The feasibility of using the fission yeast, Schizosaccharomyces pombe , as a host for the propagation of cloned large fragments of human DNA has been investigated. Two acentric vector arms were utilized; these carry autonomously replicating sequences ( ars elements), selectable markers ( ura4(+) or LEU2 ) and 250 bp of S. pombe terminal telomeric repeats. All cloning was performed between the unique sites in both vector arms for the restriction endonuclease Not I. Initially the system was tested by converting six previously characterized cosmids from human chromosome 11p13 into a form that could be propagated in S.pombe as linear episomal elements of 50-60 kb in length. In all transformants analysed these cosmids were maintained intact. To test if larger fragments of human DNA could also be propagated total human DNA was digested with Not I and size fractionated by pulsed field gel electrophoresis (PFGE). Fractions of 100-1000 kb were ligated to Not I-digested vector arms and transformed into S.pombe protoplasts in the presence of lipofectin. Prototrophic ura+leu+transformants were obtained which upon examination by PFGE were found to contain additional linear chromosomes migrating at between 100 and 500 kb with a copy number of 5-10 copies/cell. Hybridization analyses revealed that these additional bands contained human DNA. Fluorescent in situ hybridization (FISH) analyses of several independent clones indicated that the inserts were derived from single loci within the human genome. These analyses clearly demonstrate that it is possible to clone large fragments of heterologous DNA in fission yeast using this S.p ombe artificial chromosome system which we have called SPARC. This vector-host system will complement the various other systems for cloning large DNA fragments.


Asunto(s)
Cromosomas Artificiales de Levadura/genética , Clonación Molecular/métodos , ADN Recombinante/genética , Schizosaccharomyces/genética , Mapeo Cromosómico , Cósmidos , Vectores Genéticos , Humanos , Hibridación Fluorescente in Situ , Plásmidos , Transformación Genética
16.
Nucleic Acids Res ; 26(13): 3247-54, 1998 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-9628926

RESUMEN

hda1+ (histone deacetylase 1) is a fission yeast gene which is highly similar in sequence to known histone deacetylase genes in humans and budding yeast. We have investigated if this putative histone deacetylase contributes to transcriptional silencing in the fission yeast Schizosaccharomyces pombe. A precise deletion allele of the hda1+ open reading frame was created. Cells lacking the hda1+ gene are viable. However, genetic analysis reveals that cells without hda1 + display enhanced gene repression/silencing of marker genes, residing adjacent to telomeres, close to the silent mating-type loci and within centromere I. This phenotype is very similar to that recently reported for rpd3 mutants both in Drosophila and budding yeast. No defects in chromosome segregation or changes in telomere length were detected. Cells lacking the hda1+ gene display reduced sporulation. Growth of hda1 cells is partially inhibited by low concentrations of Trichostatin A (TSA), a known inhibitor of histone deacetylase enzymes. TSA treatment is also able to overcome the enhanced silencing found in heterochromatic regions of hda1 cells. These results indicate a genetic redundancy with respect to deacetylase genes and partially overlapping functions of these in fission yeast. The significance of these results is discussed in the light of recent discoveries from other eukaryotes.


Asunto(s)
Histona Desacetilasas/genética , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Centrómero , Cartilla de ADN , Humanos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido , Telómero
17.
Nature ; 392(6678): 825-8, 1998 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-9572142

RESUMEN

During meiotic prophase, chromosomes frequently adopt a bouquet-like arrangement, with their telomeres clustered close to the nuclear periphery. A dramatic example of this occurs in the fission yeast, Schizosaccharomyces pombe, where all telomeres aggregate adjacent to the spindle pole body (SPB). Nuclei then undergo rapid traverses of the cell, known as 'horsetail' movement, which is led by the SPB dragging telomeres and chromosomes behind. This process may initiate or facilitate chromosome pairing before recombination and meiosis. With the aim of identifying components involved in telomere structure and function, we report here the isolation of S. pombe mutants defective in the ability to impose transcriptional silencing on genes placed near telomeres. Two of these mutants, lot2-s17 and lot3-uv3, also display a dramatic lengthening of telomeric repeats. lot3-uv3 carries a mutation in Taz1, a telomere-binding protein containing a Myb-like motif similar to two human telomere-binding proteins. Meiosis is aberrant in these mutant yeast strains, and our analysis demonstrates a decreased association of telomeres with the SPB in meiotic prophase. This results in defective 'horsetail' movement, a significant reduction in recombination, low spore viability and chromosome missegregation through meiosis.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Meiosis/genética , Schizosaccharomyces/genética , Telómero , Cromosomas Fúngicos/fisiología , Proteínas Fúngicas/genética , Mutación , Profase , Recombinación Genética , Schizosaccharomyces/citología , Huso Acromático/fisiología , Transcripción Genética
18.
Curr Opin Genet Dev ; 7(2): 264-73, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9115433

RESUMEN

An emerging view is that the formation of active centromeres is modulated in an epigenetic manner reflecting the association of centromeres with heterochromatin. Support for this comes from studies on fission yeast centromeres, the properties of human neocentromeres and dicentric chromosomes, and analyses of Drosophila minichromosome deletion derivatives. A link has been established between tension across kinetochores and the phosphorylation status of kinetochore components. Vertebrate homologues of yeast MAD2 have recently been isolated and localized to kinetochores, indicating that components of the spindle integrity checkpoint are conserved. The linkage between sister chromatids is only dissolved at anaphase during mitotic and meiotic divisions. Phenotypic and localization data combined with their pattern of rapid degradation at anaphase have implicated several yeast and Drosophila proteins in aspects of sister chromatid cohesion.


Asunto(s)
Centrómero , Cromatina , Anafase , Animales , Cromosomas Fúngicos , Heterocromatina , Humanos , Meiosis , Schizosaccharomyces , Transducción de Señal
19.
Nature ; 385(6618): 744-7, 1997 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-9034194

RESUMEN

Telomeres, the specialized nucleoprotein structures that comprise the ends of eukaryotic chromosomes, are essential for complete replication, and regulation of their length has been a focus of research on tumorigenesis. In the budding yeast Saccharomyces cerevisiae, the protein Rap1p binds to telomeric DNA and functions in the regulation of telomere length. A human telomere protein, hTRF (human TTAGGG repeat factor) binds the telomere sequence in vitro and localizes to telomeres cytologically, but its functions are not yet known. Here we use a genetic screen to identify a telomere protein in fission yeast, Taz1p (telomere-associated in Schizosaccharomyces pombe), that shares homology to the Myb proto-oncogene DNA-binding domain with hTRF. Disruption or deletion of the taz1+ gene causes a massive increase in telomere length. Taz1p is required for the repression of telomere-adjacent gene expression and for normal meiosis or sporulation. It may be a negative regulator of the telomere-replicating enzyme, telomerase, or may protect against activation of telomerase-independent pathways of telomere elongation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros , Telómero/metabolismo , Transactivadores/química , Secuencia de Aminoácidos , Cromosomas Fúngicos/metabolismo , Clonación Molecular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Datos de Secuencia Molecular , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myb , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Esporas Fúngicas
20.
Trends Genet ; 13(12): 489-96, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9433139

RESUMEN

The centromere is required to ensure the equal distribution of replicated chromosomes to daughter nuclei. Centromeres are frequently associated with heterochromatin, an enigmatic nuclear component that causes the epigenetic transcriptional repression of nearby marker genes (position-effect variegation or silencing). The process of chromosome segregation by movement along microtubules to spindle poles is highly conserved, yet the putative cis-acting centromeric DNA sequences bear little or no similarity across species. Recently, studies in several systems have revealed that the centromere itself might be epigenetically regulated and that the higher-order structure of the underlying heterochromatin contributes to centromere function and kinetochore assembly.


Asunto(s)
Centrómero/fisiología , Células Eucariotas/fisiología , Modelos Genéticos , Animales , Secuencia de Bases , Cromatina/química , Cromatina/genética , Secuencia Conservada , Drosophila/genética , Humanos , Cinetocoros/metabolismo , Empalme del ARN , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA