Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38399400

RESUMEN

Monomeric ubiquitin (Ub) is a 76-amino-acid highly conserved protein found in eukaryotes. The biological activity of Ub first described in the 1970s was extracellular, but it quickly gained relevance due to its intracellular role, i.e., post-translational modification of intracellular proteins (ubiquitination) that regulate numerous eukaryotic cellular processes. In the following years, the extracellular role of Ub was relegated to the background, until a correlation between higher survival rate and increased serum Ub concentrations in patients with sepsis and burns was observed. Although the mechanism of action (MoA) of extracellular ubiquitin (eUb) is not yet well understood, further studies have shown that it may ameliorate the inflammatory response in tissue injury and multiple sclerosis diseases. These observations, compounded with the high stability and low immunogenicity of eUb due to its high conservation in eukaryotes, have made this small protein a relevant candidate for biotherapeutic development. Here, we review the in vitro and in vivo effects of eUb on immunologic, cardiovascular, and nervous systems, and discuss the potential MoAs of eUb as an anti-inflammatory, antimicrobial, and cardio- and brain-protective agent.

2.
Appl Microbiol Biotechnol ; 108(1): 179, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280035

RESUMEN

Several COVID-19 vaccines use adenovirus vectors to deliver the SARS-CoV-2 spike (S) protein. Immunization with these vaccines promotes immunity against the S protein, but against also the adenovirus itself. This could interfere with the entry of the vaccine into the cell, reducing its efficacy. Herein, we evaluate the efficiency of an adenovirus-vectored vaccine (chimpanzee ChAdOx1 adenovirus, AZD1222) in boosting the specific immunity compared to that induced by a recombinant receptor-binding domain (RBD)-based vaccine without viral vector. Mice immunized with the AZD1222 human vaccine were given a booster 6 months later, with either the homologous vaccine or a recombinant vaccine based on RBD of the delta variant, which was prevalent at the start of this study. A significant increase in anti-RBD antibody levels was observed in rRBD-boosted mice (31-61%) compared to those receiving two doses of AZD1222 (0%). Significantly higher rates of PepMix™- or RBD-elicited proliferation were also observed in IFNγ-producing CD4 and CD8 cells from mice boosted with one or two doses of RBD, respectively. The lower efficiency of the ChAdOx1-S vaccine in boosting specific immunity could be the result of a pre-existing anti-vector immunity, induced by increased levels of anti-adenovirus antibodies found both in mice and humans. Taken together, these results point to the importance of avoiding the recurrent use of the same adenovirus vector in individuals with immunity and memory against them. It also illustrates the disadvantages of ChAdOx1 adenovirus-vectored vaccine with respect to recombinant protein vaccines, which can be used without restriction in vaccine-booster programs. KEY POINTS: • ChAdOx1 adenovirus vaccine (AZD1222) may not be effective in boosting anti-SARS-CoV-2 immunity • A recombinant RBD protein vaccine is effective in boosting anti-SARS-CoV-2 immunity in mice • Antibodies elicited by the rRBD-delta vaccine persisted for up to 3 months in mice.


Asunto(s)
Vacunas contra el Adenovirus , COVID-19 , Vacunas , Humanos , Animales , Ratones , Pan troglodytes , ChAdOx1 nCoV-19 , Vacunas contra la COVID-19/genética , SARS-CoV-2 , COVID-19/prevención & control , Adenoviridae/genética , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
3.
MAbs ; 15(1): 2254676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37698877

RESUMEN

Prolactin (PRL) has recently been demonstrated to elicit female-selective nociceptor sensitization and increase pain-like behaviors in female animals. Here we report the discovery and characterization of first-in-class, humanized PRL neutralizing monoclonal antibodies (PRL mAbs). We obtained two potent and selective PRL mAbs, PL 200,031 and PL 200,039. PL 200,031 was engineered as human IgG1 whereas PL 200,039 was reformatted as human IgG4. Both mAbs have sub-nanomolar affinity for human PRL (hPRL) and produce concentration-dependent and complete inhibition of hPRL signaling at the hPRL receptor (hPRLR). These two PRL mAbs are selective for hPRL as they do not inhibit other hPRLR agonists such as human growth hormone or placental lactogen. They also cross-react with non-human primate PRL but not with rodent PRL. Further, both mAbs show long clearance half-lives after intravenous administration in FcRn-humanized mice. Consistent with their isotypes, these mAbs only differ in binding affinities to Fcγ receptors, as expected by design. Finally, PL 200,019, the murine parental mAb of PL 200,031 and PL 200,039, fully blocked stress-induced and PRL-dependent pain behaviors in female PRL-humanized mice, thereby providing in vivo preclinical proof-of-efficacy for PRL mAbs in mechanisms relevant to pain in females.


Asunto(s)
Prolactina , Receptores de Prolactina , Femenino , Ratones , Animales , Embarazo , Prolactina/metabolismo , Prolactina/farmacología , Receptores de Prolactina/metabolismo , Anticuerpos Monoclonales , Placenta/metabolismo , Unión Proteica
4.
Viruses ; 15(8)2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37632075

RESUMEN

We recently reported the isolation and characterization of an anti-SARS-CoV-2 antibody, called IgG-A7, that protects transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE-2) from an infection with SARS-CoV-2 Wuhan. We show here that IgG-A7 protected 100% of the transgenic mice infected with Delta (B.1.617.2) and Omicron (B.1.1.529) at doses of 0.5 and 5 mg/kg, respectively. In addition, we studied the pharmacokinetic (PK) profile and toxicology (Tox) of IgG-A7 in CD-1 mice at single doses of 100 and 200 mg/kg. The PK parameters at these high doses were proportional to the doses, with serum half-life of ~10.5 days. IgG-A7 was well tolerated with no signs of toxicity in urine and blood samples, nor in histopathology analyses. Tissue cross-reactivity (TCR) with a panel of mouse and human tissues showed no evidence of IgG-A7 interaction with the tissues of these species, supporting the PK/Tox results and suggesting that, while IgG-A7 has a broad efficacy profile, it is not toxic in humans. Thus, the information generated in the CD-1 mice as a PK/Tox model complemented with the mouse and human TCR, could be of relevance as an alternative to Non-Human Primates (NHPs) in rapidly emerging viral diseases and/or quickly evolving viruses such as SARS-CoV-2.


Asunto(s)
COVID-19 , Animales , Ratones , SARS-CoV-2 , Anticuerpos Antivirales , Ratones Transgénicos , Anticuerpos Neutralizantes , Inmunoglobulina G , Receptores de Antígenos de Linfocitos T
5.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902040

RESUMEN

We recently reported the isolation and characterization of anti-SARS-CoV-2 antibodies from a phage display library built with the VH repertoire of a convalescent COVID-19 patient, paired with four naïve synthetic VL libraries. One of the antibodies, called IgG-A7, neutralized the Wuhan, Delta (B.1.617.2) and Omicron (B.1.1.529) strains in authentic neutralization tests (PRNT). It also protected 100% transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE-2) from SARS-CoV-2 infection. In this study, the four synthetic VL libraries were combined with the semi-synthetic VH repertoire of ALTHEA Gold Libraries™ to generate a set of fully naïve, general-purpose, libraries called ALTHEA Gold Plus Libraries™. Three out of 24 specific clones for the RBD isolated from the libraries, with affinity in the low nanomolar range and sub-optimal in vitro neutralization in PRNT, were affinity optimized via a method called "Rapid Affinity Maturation" (RAM). The final molecules reached sub-nanomolar neutralization potency, slightly superior to IgG-A7, while the developability profile over the parental molecules was improved. These results demonstrate that general-purpose libraries are a valuable source of potent neutralizing antibodies. Importantly, since general-purpose libraries are "ready-to-use", it could expedite isolation of antibodies for rapidly evolving viruses such as SARS-CoV-2.


Asunto(s)
COVID-19 , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inmunoglobulina G , Ratones Transgénicos , SARS-CoV-2
6.
Cancers (Basel) ; 15(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36980702

RESUMEN

Transferrin receptor 1 (TfR1), also known as CD71, is a transmembrane protein involved in the cellular uptake of iron and the regulation of cell growth. This receptor is expressed at low levels on a variety of normal cells, but is upregulated on cells with a high rate of proliferation, including malignant cells and activated immune cells. Infection with the human immunodeficiency virus (HIV) leads to the chronic activation of B cells, resulting in high expression of TfR1, B-cell dysfunction, and ultimately the development of acquired immunodeficiency syndrome-related B-cell non-Hodgkin lymphoma (AIDS-NHL). Importantly, TfR1 expression is correlated with the stage and prognosis of NHL. Thus, it is a meaningful target for antibody-based NHL therapy. We previously developed a mouse/human chimeric IgG3 specific for TfR1 (ch128.1/IgG3) and showed that this antibody exhibits antitumor activity in an in vivo model of AIDS-NHL using NOD-SCID mice challenged intraperitoneally with 2F7 human Burkitt lymphoma (BL) cells that harbor the Epstein-Barr virus (EBV). We have also developed an IgG1 version of ch128.1 that shows significant antitumor activity in SCID-Beige mouse models of disseminated multiple myeloma, another B-cell malignancy. Here, we aim to explore the utility of ch128.1/IgG1 and its humanized version (hu128.1) in mouse models of AIDS-NHL. To accomplish this goal, we used the 2F7 cell line variant 2F7-BR44, which is more aggressive than the parental cell line and forms metastases in the brain of mice after systemic (intravenous) administration. We also used the human BL cell line JB, which in contrast to 2F7, is EBV-negative, allowing us to study both EBV-infected and non-infected NHL tumors. Treatment with ch128.1/IgG1 or hu128.1 of SCID-Beige mice challenged locally (subcutaneously) with 2F7-BR44 or JB cells results in significant antitumor activity against different stages of disease. Treatment of mice challenged systemically (intravenously) with either 2F7-BR44 or JB cells also showed significant antitumor activity, including long-term survival. Taken together, our results suggest that targeting TfR1 with antibodies, such as ch128.1/IgG1 or hu128.1, has potential as an effective therapy for AIDS-NHL.

7.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077159

RESUMEN

Since the first COVID-19 reports back in December of 2019, this viral infection caused by SARS-CoV-2 has claimed millions of lives. To control the COVID-19 pandemic, the Food and Drug Administration (FDA) and/or European Agency of Medicines (EMA) have granted Emergency Use Authorization (EUA) to nine therapeutic antibodies. Nonetheless, the natural evolution of SARS-CoV-2 has generated numerous variants of concern (VOCs) that have challenged the efficacy of the EUA antibodies. Here, we review the most relevant characteristics of these therapeutic antibodies, including timeline of approval, neutralization profile against the VOCs, selection methods of their variable regions, somatic mutations, HCDR3 and LCDR3 features, isotype, Fc modifications used in the therapeutic format, and epitope recognized on the receptor-binding domain (RBD) of SARS-CoV-2. One of the conclusions of the review is that the EUA therapeutic antibodies that still retain efficacy against new VOCs bind an epitope formed by conserved residues that seem to be evolutionarily conserved as thus, critical for the RBD:hACE-2 interaction. The information reviewed here should help to design new and more efficacious antibodies to prevent and/or treat COVID-19, as well as other infectious diseases.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Epítopos , Humanos , Glicoproteínas de Membrana/metabolismo , Pruebas de Neutralización , Pandemias , SARS-CoV-2 , Estados Unidos , Proteínas del Envoltorio Viral/genética
8.
Antibodies (Basel) ; 11(3)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36134953

RESUMEN

Neutralizing antibodies targeting the receptor-binding domain (RBD) of SARS-CoV-2 are among the most promising strategies to prevent and/or treat COVID-19. However, as SARS-CoV-2 has evolved into new variants, most of the neutralizing antibodies authorized by the US FDA and/or EMA to treat COVID-19 have shown reduced efficacy or have failed to neutralize the variants of concern (VOCs), particularly B.1.1.529 (Omicron). Previously, we reported the discovery and characterization of antibodies with high affinity for SARS-CoV-2 RBD Wuhan (WT), B.1.617.2 (Delta), and B.1.1.529 (Omicron) strains. One of the antibodies, called IgG-A7, also blocked the interaction of human angiotensin-converting enzyme 2 (hACE2) with the RBDs of the three strains, suggesting it may be a broadly SARS-CoV-2 neutralizing antibody. Herein, we show that IgG-A7 efficiently neutralizes all the three SARS-CoV-2 strains in plaque reduction neutralization tests (PRNTs). In addition, we demonstrate that IgG-A7 fully protects K18-hACE2 transgenic mice infected with SARS-CoV-2 WT. Taken together, our findings indicate that IgG-A7 could be a suitable candidate for development of antibody-based drugs to treat and/or prevent SARS-CoV-2 VOCs infection.

9.
Antibodies (Basel) ; 11(1)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35225871

RESUMEN

This report describes the discovery and characterization of antibodies with potential broad SARS-CoV-2 neutralization profiles. The antibodies were obtained from a phage display library built with the VH repertoire of a convalescent COVID-19 patient who was infected with SARS-CoV-2 B.1.617.2 (Delta). The patient received a single dose of Ad5-nCoV vaccine (Convidecia™, CanSino Biologics Inc.) one month before developing COVID-19 symptoms. Four synthetic VL libraries were used as counterparts of the immune VH repertoire. After three rounds of panning with SARS-CoV-2 receptor-binding domain wildtype (RBD-WT) 34 unique scFvs, were identified, with 27 cross-reactive for the RBD-WT and RBD Delta (RBD-DT), and seven specifics for the RBD-WT. The cross-reactive scFvs were more diverse than the RBD-WT specific ones, being encoded by several IGHV genes from the IGHV1 and IGHV3 families combined with short HCDR3s. Six cross-reactive scFvs and one RBD-WT specific scFv were converted to human IgG1 (hIgG1). Out of the seven antibodies, six blocked the RBD-WT binding to angiotensin converting enzyme 2 (ACE2), suggesting these antibodies may neutralize the SARS-CoV-2 infection. Importantly, one of the antibodies also recognized the RBD from the B.1.1.529 (Omicron) isolate, implying that the VH repertoire of the convalescent patient would protect against SARS-CoV-2 Wildtype, Delta, and Omicron. From a practical viewpoint, the triple cross-reactive antibody provides the substrate for developing therapeutic antibodies with a broad SARS-CoV-2 neutralization profile.

10.
Antibodies (Basel) ; 8(3)2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31544850

RESUMEN

Phage display technology has played a key role in the remarkable progress of discovering and optimizing antibodies for diverse applications, particularly antibody-based drugs. This technology was initially developed by George Smith in the mid-1980s and applied by John McCafferty and Gregory Winter to antibody engineering at the beginning of 1990s. Here, we compare nine phage display antibody libraries published in the last decade, which represent the state of the art in the discovery and development of therapeutic antibodies using phage display. We first discuss the quality of the libraries and the diverse types of antibody repertoires used as substrates to build the libraries, i.e., naïve, synthetic, and semisynthetic. Second, we review the performance of the libraries in terms of the number of positive clones per panning, hit rate, affinity, and developability of the selected antibodies. Finally, we highlight current opportunities and challenges pertaining to phage display platforms and related display technologies.

11.
MAbs ; 11(3): 516-531, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30663541

RESUMEN

We describe here the design, construction and validation of ALTHEA Gold Libraries™. These single-chain variable fragment (scFv), semisynthetic libraries are built on synthetic human well-known IGHV and IGKV germline genes combined with natural human complementarity-determining region (CDR)-H3/JH (H3J) fragments. One IGHV gene provided a universal VH scaffold and was paired with two IGKV scaffolds to furnish different topographies for binding distinct epitopes. The scaffolds were diversified at positions identified as in contact with antigens in the known antigen-antibody complex structures. The diversification regime consisted of high-usage amino acids found at those positions in human antibody sequences. Functionality, stability and diversity of the libraries were improved throughout a three-step construction process. In a first step, fully synthetic primary libraries were generated by combining the diversified scaffolds with a set of synthetic neutral H3J germline gene fragments. The second step consisted of selecting the primary libraries for enhanced thermostability based on the natural capacity of Protein A to bind the universal VH scaffold. In the third and final step, the resultant stable synthetic antibody fragments were combined with natural H3J fragments obtained from peripheral blood mononuclear cells of a large pool of 200 donors. Validation of ALTHEA Gold Libraries™ with seven targets yielded specific antibodies in all the cases. Further characterization of the isolated antibodies indicated KD values as human IgG1 molecules in the single-digit and sub-nM range. The thermal stability (Tm) of all the antigen-binding fragments was 75°C-80°C, demonstrating that ALTHEA Gold Libraries™ are a valuable source of specific, high affinity and highly stable antibodies.


Asunto(s)
Regiones Determinantes de Complementariedad , Biblioteca de Genes , Inmunoglobulina G , Anticuerpos de Cadena Única , Regiones Determinantes de Complementariedad/biosíntesis , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/química , Inmunoglobulina G/genética , Leucocitos Mononucleares/metabolismo , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética
12.
Front Immunol ; 8: 1751, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29379493

RESUMEN

The remarkable progress in engineering and clinical development of therapeutic antibodies in the last 40 years, after the seminal work by Köhler and Milstein, has led to the approval by the United States Food and Drug Administration (FDA) of 21 antibodies for cancer immunotherapy. We review here these approved antibodies, with emphasis on the methods used for their discovery, engineering, and optimization for therapeutic settings. These methods include antibody engineering via chimerization and humanization of non-human antibodies, as well as selection and further optimization of fully human antibodies isolated from human antibody phage-displayed libraries and immunization of transgenic mice capable of generating human antibodies. These technology platforms have progressively led to the development of therapeutic antibodies with higher human content and, thus, less immunogenicity. We also discuss the genetic engineering approaches that have allowed isotype switching and Fc modifications to modulate effector functions and bioavailability (half-life), which together with the technologies for engineering the Fv fragment, have been pivotal in generating more efficacious and better tolerated therapeutic antibodies to treat cancer.

13.
Proteins ; 82(8): 1656-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24638881

RESUMEN

The functional role of human antihinge (HAH) autoantibodies in normal health and disease remains elusive, but recent evidence supports their role in the host response to IgG cleavage by proteases that are prevalent in certain disorders. Characterization and potential exploitation of these HAH antibodies has been hindered by the absence of monoclonal reagents. 2095-2 is a rabbit monoclonal antibody targeting the IdeS-cleaved hinge of human IgG1. We have determined the crystal structure of the Fab of 2095-2 and its complex with a hinge analog peptide. The antibody is selective for the C-terminally cleaved hinge ending in G236 and this interaction involves an uncommon disulfide in VL CDR3. We probed the importance of the disulfide in VL CDR3 through engineering variants. We identified one variant, QAA, which does not require the disulfide for biological activity or peptide binding. The structure of this variant offers a starting point for further engineering of 2095-2 with the same specificity, but lacking the potential manufacturing liability of an additional disulfide. Proteins 2014; 82:1656-1667. © 2014 Wiley Periodicals, Inc.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Inmunoglobulina G/inmunología , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Péptidos/química , Péptidos/inmunología , Conformación Proteica , Proteolisis , Conejos
14.
Proteins ; 82(8): 1553-62, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24668560

RESUMEN

To assess the state of the art in antibody 3D modeling, 11 unpublished high-resolution x-ray Fab crystal structures from diverse species and covering a wide range of antigen-binding site conformations were used as a benchmark to compare Fv models generated by seven structure prediction methodologies. The participants included: Accerlys Inc, Chemical Computer Group (CCG), Schrodinger, Jeff Gray's lab at John Hopkins University, Macromoltek, Astellas Pharma/Osaka University and Prediction of ImmunoGlobulin Structure (PIGS). The sequences of benchmark structures were submitted to the modelers and PIGS, and a set of models were generated for each structure. We provide here an overview of the organization, participants and main results of this second antibody modeling assessment (AMA-II). Also, we compare the results with the first antibody assessment published in this journal (Almagro et al., 2011;79:3050).


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión de Anticuerpos , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Conejos
15.
MAbs ; 6(3): 628-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24481222

RESUMEN

To gain insight into the functional antibody repertoire of rabbits, the VH and VL repertoires of bone marrow (BM) and spleen (SP) of a naïve New Zealand White rabbit (NZW; Oryctolagus cuniculus) and that of lymphocytes collected from a NZW rabbit immunized (IM) with a 16-mer peptide were deep-sequenced. Two closely related genes, IGHV1S40 (VH1a3) and IGHV1S45 (VH4), were found to dominate (~90%) the VH repertoire of BM and SP, whereas, IGHV1S69 (VH1a1) contributed significantly (~40%) to IM. BM and SP antibodies recombined predominantly with IGHJ4. A significant proportion (~30%) of IM sequences recombined with IGHJ2. The VK repertoire was encoded by nine IGKV genes recombined with one IGKJ gene, IGKJ1. No significant bias in the VK repertoire of the BM, SP and IM samples was observed. The complementarity-determining region (CDR)-H3 and -L3 length distributions were similar in the three samples following a Gaussian curve with average length of 12.2 ± 2.4 and 11.1 ± 1.1 amino acids, respectively. The amino acid composition of the predominant CDR-H3 and -L3 loop lengths was similar to that of humans and mice, rich in Tyr, Gly, Ser and, in some specific positions, Asp. The average number of mutations along the IGHV/KV genes was similar in BM, SP and IM; close to 12 and 15 mutations for VH and VL, respectively. A monoclonal antibody specific for the peptide used as immunogen was obtained from the IM rabbit. The CDR-H3 sequence was found in 1,559 of 61,728 (2.5%) sequences, at position 10, in the rank order of the CDR-H3 frequencies. The CDR-L3 was found in 24 of 11,215 (0.2%) sequences, ranking 102. No match was found in the BM and SP samples, indicating positive selection for the hybridoma sequence. Altogether, these findings lay foundations for engineering of rabbit V regions to enhance their potential as therapeutics, i.e., design of strategies for selection of specific rabbit V regions from NGS data mining, humanization and design of libraries for affinity maturation campaigns.


Asunto(s)
Anticuerpos/genética , Anticuerpos/inmunología , Conejos/genética , Conejos/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Médula Ósea/inmunología , Regiones Determinantes de Complementariedad/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hibridomas/inmunología , Inmunización , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Ratones , Datos de Secuencia Molecular , Mutación , Péptidos/inmunología , Ingeniería de Proteínas , Homología de Secuencia de Aminoácido , Bazo/inmunología
16.
Front Immunol ; 3: 342, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23162556

RESUMEN

Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety, and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of humans, mice, and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity, and composition of a repertoire impact the antibody discovery process.

17.
Proteins ; 79(11): 3050-66, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21935986

RESUMEN

A blinded study to assess the state of the art in three-dimensional structure modeling of the variable region (Fv) of antibodies was conducted. Nine unpublished high-resolution x-ray Fab crystal structures covering a wide range of antigen-binding site conformations were used as benchmark to compare Fv models generated by four structure prediction methodologies. The methodologies included two homology modeling strategies independently developed by CCG (Chemical Computer Group) and Accerlys Inc, and two fully automated antibody modeling servers: PIGS (Prediction of ImmunoGlobulin Structure), based on the canonical structure model, and Rosetta Antibody Modeling, based on homology modeling and Rosetta structure prediction methodology. The benchmark structure sequences were submitted to Accelrys and CCG and a set of models for each of the nine antibody structures were generated. PIGS and Rosetta models were obtained using the default parameters of the servers. In most cases, we found good agreement between the models and x-ray structures. The average rmsd (root mean square deviation) values calculated over the backbone atoms between the models and structures were fairly consistent, around 1.2 Å. Average rmsd values of the framework and hypervariable loops with canonical structures (L1, L2, L3, H1, and H2) were close to 1.0 Å. H3 prediction yielded rmsd values around 3.0 Å for most of the models. Quality assessment of the models and the relative strengths and weaknesses of the methods are discussed. We hope this initiative will serve as a model of scientific partnership and look forward to future antibody modeling assessments.


Asunto(s)
Anticuerpos/química , Sitios de Unión de Anticuerpos , Región Variable de Inmunoglobulina/química , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Ratas , Alineación de Secuencia , Programas Informáticos
18.
J Mol Biol ; 398(2): 214-31, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20226193

RESUMEN

Humanization of a potent neutralizing mouse anti-human IL-13 antibody (m836) using a method called human framework adaptation (HFA) is reported. HFA consists of two steps: human framework selection (HFS) and specificity-determining residue optimization (SDRO). The HFS step involved generation of a library of m836 antigen binding sites combined with diverse human germline framework regions (FRs), which were selected based on structural and sequence similarities between mouse variable domains and a repertoire of human antibody germline genes. SDRO consisted of diversifying specificity-determining residues and selecting variants with improved affinity using phage display. HFS of m836 resulted in a 5-fold loss of affinity, whereas SDRO increased the affinity up to 100-fold compared to the HFS antibody. Crystal structures of Fabs in complex with IL-13 were obtained for m836, the HFS variant chosen for SDRO, and one of the highest-affinity SDRO variants. Analysis of the structures revealed that major conformational changes in FR-H1 and FR-H3 occurred after FR replacement, but none of them had an evident direct impact on residues in contact with IL-13. Instead, subtle changes affected the V(L)/V(H) (variable-light domain/variable-heavy domain) interface and were likely responsible for the 5-fold decreased affinity. After SDRO, increased affinity resulted mainly from rearrangements in hydrogen-bonding pattern at the antibody/antigen interface. Comparison with m836 putative germline genes suggested interesting analogies between natural affinity maturation and the engineering process that led to the potent HFA anti-human IL-13 antibody.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Región Variable de Inmunoglobulina/inmunología , Interleucina-13/antagonistas & inhibidores , Interleucina-13/inmunología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Reacciones Antígeno-Anticuerpo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/genética , Ratones , Datos de Secuencia Molecular , Biblioteca de Péptidos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Alineación de Secuencia
19.
J Mol Biol ; 397(2): 385-96, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20114051

RESUMEN

Filamentous phage was the first display platform employed to isolate antibodies in vitro and is still the most broadly used. The success of phage display is due to its robustness, ease of use, and comprehensive technology development, as well as a broad range of selection methods developed during the last two decades. We report here the first combinatorial synthetic Fab libraries displayed on pIX, a fusion partner different from the widely used pIII. The libraries were constructed on four V(L) and three V(H) domains encoded by IGV and IGJ germ-line genes frequently used in human antibodies, which were diversified to mirror the variability observed in the germ-line genes and antibodies isolated from natural sources. Two sets of libraries were built, one with diversity focused on V(H) by keeping V(L) in the germ-line gene configuration and the other with diversity in both V domains. After selection on a diverse panel of proteins, numerous specific Fabs with affinities ranging from 0.2 nM to 20 nM were isolated. V(H) diversity was sufficient for isolating Fabs to most antigens, whereas variability in V(L) was required for isolation of antibodies to some targets. After the application of an integrated maturation process consisting of reshuffling V(L) diversity, the affinity of selected antibodies was improved up to 100-fold to the low picomolar range, suitable for in vivo studies. The results demonstrate the feasibility of displaying complex Fab libraries as pIX fusion proteins for antibody discovery and optimization and lay the foundation for studies on the structure-function relationships of antibodies.


Asunto(s)
Anticuerpos/inmunología , Anticuerpos/aislamiento & purificación , Afinidad de Anticuerpos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Biblioteca de Péptidos , Anticuerpos/genética , Bacteriófagos/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Vectores Genéticos , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación
20.
J Mol Biol ; 378(3): 622-33, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18384812

RESUMEN

Synthetic antibody libraries have proven immensely useful for the de novo isolation of antibodies without the need for animal immunization. Recently, focused libraries designed to recognize particular classes of ligands, such as haptens or proteins, have been employed to facilitate the selection of high-affinity antibodies. Focused libraries are built using V regions encoding combinations of canonical structures that resemble the structural features of antibodies that bind the desired class of ligands and sequence diversity is introduced at residues typically involved in recognition. Here we describe the generation and experimental validation of two different single-chain antibody variable fragment libraries that efficiently generate binders to peptides, a class of molecules that has proven to be a difficult target for antibody generation. First, a human anti-peptide library was constructed by diversifying a scaffold: the human variable heavy chain (V(H)) germ line gene 3-23, which was fused to a variant of the human variable light chain (V(L)) germ line gene A27, in which L1 was modified to encode the canonical structure found in anti-peptide antibodies. The sequence diversity was introduced into 3-23 (V(H)) only, targeting for diversification residues commonly found in contact with protein and peptide antigens. Second, a murine library was generated using the antibody 26-10, which was initially isolated based on its affinity to the hapten digoxin, but also binds peptides and exhibits a canonical structure pattern typical of anti-peptide antibodies. Diversity was introduced in the V(H) only using the profile of amino acids found at positions that frequently contact peptide antigens. Both libraries yielded binders to two model peptides, angiotensin and neuropeptide Y, following screening by solution phage panning. The mouse library yielded antibodies with affinities below 20 nM to both targets, although only the V(H) had been subjected to diversification.


Asunto(s)
Anticuerpos/química , Biblioteca de Péptidos , Secuencia de Aminoácidos , Anticuerpos/inmunología , Afinidad de Anticuerpos , Sitios de Unión de Anticuerpos , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/inmunología , Cinética , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...