Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Pathol Res Pract ; 258: 155333, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38723325

RESUMEN

Long non-coding RNAs (lncRNAs) are a diverse class of RNA molecules that do not code for proteins but play critical roles in gene regulation. One such role involves the modulation of cell cycle progression and proliferation through interactions with cyclin-dependent kinases (CDKs), key regulators of cell division. Dysregulation of CDK activity is a hallmark of cancer, contributing to uncontrolled cell growth and tumor formation. These lncRNA-CDK interactions are part of a complex network of molecular mechanisms underlying cancer pathogenesis, involving various signaling pathways and regulatory circuits. Understanding the interplay between lncRNAs, CDKs, and cancer biology holds promise for developing novel therapeutic strategies targeting these molecular targets for more effective cancer treatment. Furthermore, targeting CDKs, key cell cycle progression and proliferation regulators, offers another avenue for disrupting cancer pathways and overcoming drug resistance. This can open new possibilities for individualized treatment plans and focused therapeutic interventions.

2.
Ageing Res Rev ; 98: 102327, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734148

RESUMEN

Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.

3.
Pathol Res Pract ; 258: 155329, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38692083

RESUMEN

Fibrosarcoma is a challenging cancer originating from fibrous tissues, marked by aggressive growth and limited treatment options. The discovery of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs), has opened new pathways for understanding and treating this malignancy. These ncRNAs play crucial roles in gene regulation, cellular processes, and the tumor microenvironment. This review aims to explore the impact of ncRNAs on fibrosarcoma's pathogenesis, progression, and resistance to treatment, focusing on their mechanistic roles and therapeutic potential. A comprehensive review of literature from databases like PubMed and Google Scholar was conducted, focusing on the dysregulation of ncRNAs in fibrosarcoma, their contribution to tumor growth, metastasis, drug resistance, and their cellular pathway interactions. NcRNAs significantly influence fibrosarcoma, affecting cell proliferation, apoptosis, invasion, and angiogenesis. Their function as oncogenes or tumor suppressors makes them promising biomarkers and therapeutic targets. Understanding their interaction with the tumor microenvironment is essential for developing more effective treatments for fibrosarcoma. Targeting ncRNAs emerges as a promising strategy for fibrosarcoma therapy, offering hope to overcome the shortcomings of existing treatments. Further investigation is needed to clarify specific ncRNAs' roles in fibrosarcoma and to develop ncRNA-based therapies, highlighting the significance of ncRNAs in improving patient outcomes in this challenging cancer.

4.
Life Sci ; 345: 122613, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582393

RESUMEN

Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor type, with a discouragingly low survival rate and few effective treatments. An important function of the EGFR signalling pathway in the development of GBM is to affect tumor proliferation, persistence, and treatment resistance. Advances in molecular biology in the last several years have shown how important ncRNAs are for controlling a wide range of biological activities, including cancer progression and development. NcRNAs have become important post-transcriptional regulators of gene expression, and they may affect the EGFR pathway by either directly targeting EGFR or by modifying important transcription factors and downstream signalling molecules. The EGFR pathway is aberrantly activated in response to the dysregulation of certain ncRNAs, which has been linked to GBM carcinogenesis, treatment resistance, and unfavourable patient outcomes. We review the literature on miRNAs, circRNAs and lncRNAs that are implicated in the regulation of EGFR signalling in GBM, discussing their mechanisms of action, interactions with the signalling pathway, and implications for GBM therapy. Furthermore, we explore the potential of ncRNA-based strategies to overcome resistance to EGFR-targeted therapies, including the use of ncRNA mimics or inhibitors to modulate the activity of key regulators within the pathway.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Humanos , Receptores ErbB/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Transducción de Señal , MicroARNs/metabolismo , ARN no Traducido/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
5.
Chem Biol Interact ; 394: 111002, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604395

RESUMEN

Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.


Asunto(s)
Asma , Bronquitis , Formaldehído , Fibrosis Pulmonar , Formaldehído/toxicidad , Formaldehído/efectos adversos , Humanos , Asma/inducido químicamente , Fibrosis Pulmonar/inducido químicamente , Bronquitis/inducido químicamente , Animales , Exposición a Riesgos Ambientales/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/patología , Neumonía/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Inflamación/inducido químicamente
6.
Pathol Res Pract ; 257: 155282, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608371

RESUMEN

Cancer is a group of diseases marked by unchecked cell proliferation and the ability for the disease to metastasize to different body areas. Enhancements in treatment and early detection are crucial for improved outcomes. LncRNAs are RNA molecules that encode proteins and have a length of more than 200 nucleotides. LncRNAs are crucial for chromatin architecture, gene regulation, and other cellular activities that impact both normal growth & pathological processes, even though they are unable to code for proteins. LncRNAs have emerged as significant regulators in the study of cancer biology, with a focus on their intricate function in the Notch signaling pathway. The imbalance of this pathway is often linked to a variety of malignancies. Notch signaling is essential for cellular functions like proliferation, differentiation, and death. The cellular response is shaped by these lncRNAs through their modulation of essential Notch pathway constituents such as receptors, ligands, and downstream effectors around it. Furthermore, a variety of cancer types exhibit irregular expression of Notch-related lncRNAs, underscoring their potential use as therapeutic targets and diagnostic markers. Gaining an understanding of the molecular processes behind the interaction between the Notch pathway and lncRNAs will help you better understand the intricate regulatory networks that control the development of cancer. This can open up new possibilities for individualized treatment plans and focused therapeutic interventions. The intricate relationships between lncRNAs & the Notch pathway in cancer are examined in this review.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Receptores Notch , Transducción de Señal , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Neoplasias/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Transducción de Señal/genética , Regulación Neoplásica de la Expresión Génica/genética , Animales
7.
Pathol Res Pract ; 256: 155257, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537524

RESUMEN

Circular RNAs (circRNAs) constitute a recently identified category of closed continuous loop RNA transcripts, serving as a subset of competing endogenous RNAs (ceRNAs) with the capacity to modulate genes by acting as microRNA sponges. In the context of cancer growth, numerous investigations have explored the potential functions of circRNAs, revealing their diverse functions either as oncogenes, promoting cancer progression, or as tumor suppressors, mitigating disease development. Among these, circRNA ADAM9 (Circ-ADAM9) is now recognized as an important player in a variety of mechanisms, both physiological and pathological, especially in cancer. The aberrant expression of Circ-ADAM9 has been observed across multiple human malignancies, implying a significant involvement in tumorigenesis. This comprehensive review aims to synthesize recent findings elucidating the function of Circ-ADAM9 in many malignancies. Additionally, the review explores the possibility of Circ-ADAM9 as a valuable biomarker, offering insights into its prognostic, diagnostic, and therapeutic implications. By summarizing the latest discoveries in this field, the review contributes to our understanding of the multifaceted contribution of Circ-ADAM9 in tumor biology and its potential applications in clinical settings.


Asunto(s)
MicroARNs , Neoplasias , Humanos , ARN Circular/genética , Neoplasias/genética , MicroARNs/genética , Carcinogénesis/genética , Transformación Celular Neoplásica , Proteínas de la Membrana/genética , Proteínas ADAM
8.
Pathol Res Pract ; 256: 155224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452584

RESUMEN

Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Sepsis , Humanos , Piroptosis/fisiología , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética
9.
Pathol Res Pract ; 256: 155260, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493726

RESUMEN

Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-ß signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-ß regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-ß signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-ß receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-ß pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-ß signalling.


Asunto(s)
Arsénico , Contaminantes Ambientales , Neoplasias Pulmonares , Metales Pesados , Humanos , Cadmio/análisis , Arsénico/toxicidad , Arsénico/análisis , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Ecosistema , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Pulmón/metabolismo
10.
Exp Gerontol ; 188: 112389, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432575

RESUMEN

Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the ß-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.


Asunto(s)
Quempferoles , Síndrome de Dificultad Respiratoria , Humanos , Quempferoles/farmacología , Quempferoles/uso terapéutico , Quempferoles/química , Fosfatidilinositol 3-Quinasas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Envejecimiento , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
11.
Pathol Res Pract ; 255: 155132, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335783

RESUMEN

Cancer, a complex pathophysiological condition, arises from the abnormal proliferation and survival of cells due to genetic mutations. Dysregulation of cell cycle control, apoptosis, and genomic stability contribute to uncontrolled growth and metastasis. Tumor heterogeneity, microenvironmental influences, and immune evasion further complicate cancer dynamics. The intricate interplay between circular RNAs (circRNAs) and the Wnt/ß-Catenin signalling pathway has emerged as a pivotal axis in the landscape of cancer biology. The Wnt/ß-Catenin pathway, a critical regulator of cell fate and proliferation, is frequently dysregulated in various cancers. CircRNAs, a class of non-coding RNAs with closed-loop structures, have garnered increasing attention for their diverse regulatory functions. This review systematically explores the intricate crosstalk between circRNAs and the Wnt/ß-Catenin pathway, shedding light on their collective impact on cancer initiation and progression. The review explores the diverse mechanisms through which circRNAs modulate the Wnt/ß-Catenin pathway, including sponging microRNAs, interacting with RNA-binding proteins, and influencing the expression of key components in the pathway. Furthermore, the review highlights specific circRNAs implicated in various cancer types, elucidating their roles as either oncogenic or tumour-suppressive players in the context of Wnt/ß-Catenin signaling. The intricate regulatory networks formed by circRNAs in conjunction with the Wnt/ß-Catenin pathway are discussed, providing insights into potential therapeutic targets and diagnostic biomarkers. This comprehensive review delves into the multifaceted roles of circRNAs in orchestrating tumorigenesis through their regulatory influence on the Wnt/ß-Catenin pathway.


Asunto(s)
MicroARNs , Neoplasias , Humanos , ARN Circular/genética , beta Catenina/metabolismo , Neoplasias/genética , Neoplasias/patología , MicroARNs/genética , MicroARNs/metabolismo , Carcinogénesis/genética , Vía de Señalización Wnt/genética , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética
12.
Pathol Res Pract ; 255: 155173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364649

RESUMEN

The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.


Asunto(s)
Contaminantes Ambientales , Microbioma Gastrointestinal , Metales Pesados , Plaguicidas , Animales , Humanos , Microbioma Gastrointestinal/fisiología , Ecosistema , Contaminantes Ambientales/toxicidad , Metales Pesados/toxicidad , Plaguicidas/toxicidad
13.
Artículo en Inglés | MEDLINE | ID: mdl-38310448

RESUMEN

Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.

14.
EXCLI J ; 23: 34-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343745

RESUMEN

This review delves into the pivotal role of the long non-coding RNA NEAT1 in cancer biology, particularly in lung cancer (LC). It emphasizes NEAT1's unique subcellular localization and active involvement in gene regulation and chromatin remodeling. The review highlights NEAT1's impact on LC development and progression, including cell processes such as proliferation, migration, invasion, and resistance to therapy, positioning it as a potential diagnostic marker and therapeutic target. The complex web of NEAT1's regulatory interactions with proteins and microRNAs is explored, alongside challenges in targeting it therapeutically. The review concludes optimistically, suggesting future avenues for research and personalized LC therapies, shedding light on NEAT1's crucial role in LC. See also the Graphical abstract(Fig. 1).

15.
ACS Omega ; 9(6): 6976-6985, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371830

RESUMEN

Alzheimer's disease (AD) is a long-term neurodegenerative condition characterized by impaired cognitive functions, particularly in the domains of learning and memory. Finding promising options for AD can be successful with a medication repurposing strategy. The goal of the research was to examine the neuroprotective characteristics of barbaloin in aluminum chloride (AlCl3)-induced cognitive deficits and changes in rats through modulation of oxidative stress, cytokines, and brain-derived neurotrophic factor (BDNF) expression. Thirty male Wistar rats were subjected to AlCl3 at a dosage of 100 mg/kg via the per oral route (p.o.), which induced cognitive decline. Morris water maze (MWM) is used to assess behavioral metrics. Assays for catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), interleukins-1ß (IL-1ß), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukins-6 (IL-6), BDNF, and neurotransmitter levels [dopamine (DA), acetylcholine (Ach), and γ-aminobutyric acid (GABA)] were performed. Results: The transfer latency time was notably decreased, and substantial modifications in the concentrations of GSH, MDA, CAT, SOD, AChE, ChAT and observed modulations in the formation of interleukins-6 (IL-6), TNF-α, IL-1ß, BDNF, and NF-κB were also evidenced after the treatment of rats with barbaloin in comparison to AlCl3-induced control groups. Significant alterations in neurotransmitter levels (DA, Ach, and GABA) were also seen in barbaloin-treated groups in comparison to AlCl3-induced groups. The current investigation has provided evidence that the administration of barbaloin yielded notable enhancements in cognitive function in rats through the inhibition of MDA, enhancing endogenous antioxidant enzymes, reduction of cytokine levels, and enhancement of neurotransmitter contents in the brain. These effects were observed in comparison to a control group treated with AlCl3 and can be attributable to barbaloin's strong anti-inflammatory and antioxidant properties, and metal chelating properties may contribute to its neuroprotective effects. Barbaloin may also promote neuronal survival and enhance learning and memory by upregulating the expression of BDNF.

16.
Pathol Res Pract ; 254: 155131, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309018

RESUMEN

Diabetes has been a significant healthcare problem worldwide for a considerable period. The primary objective of diabetic treatment plans is to control the symptoms associated with the pathology. To effectively combat diabetes, it is crucial to comprehend the disease's etiology, essential factors, and the relevant processes involving ß-cells. The development of the pancreas, maturation, and maintenance of ß-cells, and their role in regular insulin function are all regulated by PDX1. Therefore, understanding the regulation of PDX1 and its interactions with signaling pathways involved in ß-cell differentiation and proliferation are crucial elements of alternative diabetes treatment strategies. The present review aims to explore the protective role of PDX1 in ß-cell proliferation through signaling pathways. The main keywords chosen for this review include "PDX1 for ß-cell mass," "ß-cell proliferation," "ß-cell restoration via PDX1," and "mechanism of PDX1 in ß-cells." A comprehensive literature search was conducted using various internet search engines, such as PubMed, Science Direct, and other publication databases. We summarize several approaches to generating ß-cells from alternative cell sources, employing PDX1 under various modified growth conditions and different transcriptional factors. Our analysis highlights the unique potential of PDX1 as a promising target in molecular and cell-based therapies for diabetes.


Asunto(s)
Diabetes Mellitus , Proteínas de Homeodominio , Células Secretoras de Insulina , Transactivadores , Humanos , Diabetes Mellitus/terapia , Diabetes Mellitus/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
17.
Microsc Res Tech ; 87(6): 1173-1182, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38288976

RESUMEN

This study presents a comprehensive scanning electron microscopy (SEM) analysis of Opuntioideae cactus stems indigenous to the arid regions of Saudi Arabia, elucidating their intricate microstructural features. The findings not only advance taxonomic understanding by aiding in species differentiation but also reveal the antimicrobial potential of these cacti, highlighting their significance as valuable natural resources for both ecological and pharmaceutical applications. The present study is aimed to present the stem epidermal anatomical description of Opuntioideae (Cactaceae) belonging to genus Opuntia (five Species), Cylindropuntia (two Species), and Austrocylindropuntia (one Species) as tool for systematic identification. Stem epidermal anatomical features represent here are epidermal cells, stomatal complex, subsidiary cells, and trichomes findings was observed using light microscope and SEM. The stem epidermal sections were made by heating in test tube containing lactic acid and nitric acid protocol. In anatomical findings, irregular, zigzag, wavy, and polygonal epidermal cells with sinuate, sinuous, and straight anticlinal walls were observed. Quantitatively minimum length (28.05 ± 2.05 µm) and width (23.15 ± 3.41 µm) of epidermal cells were noted in Cylindropuntia kleiniae. Paracytic type of stomata present was observed in all species with kidney-shaped guard cell present in six species, and in Opuntia macrocentra and Austrocylindropuntia subulata, dumbbell-shaped guard cells were observed. The largest length of stomata (53.25 ± 2.05 µm) and width of stomata (35.10 ± 5.19 µm) were observed in Opuntia monacantha. In present research work, stem anatomical features show many diverse characters are of special attention for plant taxonomist for the correct identification and provide baseline for further study in subfamily Opuntiodeae. RESEARCH HIGHLIGHTS: The intricate microstructures of Opuntioideae cactus stems. Investigating the antimicrobial potential of compounds found within Opuntioideae cactus stems. Correlations between the unique structural features observed through SEM and the antimicrobial activity of Opuntioideae cactus stem extracts.


Asunto(s)
Antiinfecciosos , Cactaceae , Epidermis de la Planta , Hojas de la Planta , Microscopía Electrónica de Rastreo , Estomas de Plantas
18.
Pathol Res Pract ; 253: 155032, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38176306

RESUMEN

In the spectrum of breast neoplasms, approximately 15 to 20% of all diagnosed cases are triple-negative breast carcinoma. TNBC grows and spreads faster than other invasive breast cancers and has a worse prognosis. The existing therapies and chemotherapeutic drugs have several limitations, so the development of safe and affordable treatment options is currently in demand. Hence, this research focuses on scientifically evaluating the therapeutic anticancer effect of ethyl acetate extract of MSG and its combined efficacy with doxorubicin against TNBC. MSG has shown an IC50 value of 48.40 ± 1.68 µg/ml on the MDA-MB-231 cell line, and the combination of MSG with Dox demonstrated the synergistic effect. Apoptotic changes such as membrane blebbing chromatin condensation were observed in MSG alone and in combination with doxorubicin treatments. Apoptosis was confirmed with Annexin V-FITC/PI staining and increased apoptotic markers such as Cleaved caspase-3 Bax and decreased anti-apoptotic markers Bcl-2 by western blotting. The tumor burden significantly decreased in MSG and combination treatment groups while restoring their body weights. Meanwhile, the Dox-treated group indicated a decreased tumor burden combined with weight loss. The present investigation revealed that MSG and doxorubicin have a synergistic anticancer effect in TNBC.


Asunto(s)
Acetatos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Doxorrubicina/farmacología , Apoptosis
19.
Pathol Res Pract ; 254: 155121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38262269

RESUMEN

Glioblastoma is a prevalent form of carcinoma that exhibits a greater incidence rate across diverse demographics globally. Despite extensive global efforts, GBM continues to be a highly lethal disease that is characterized by a grim prognosis. There is a wealth of evidence suggesting that the pathophysiology of GBM is associated with the dysregulation of numerous cellular and molecular processes. The etiology of GBM may involve various cellular and molecular pathways, including EGFR, PDCD4, NF-κB, MAPK, matrix metalloproteinases, STAT, and Akt. MicroRNAs, short non-coding RNA molecules, regulate gene expression and mRNA translation after transcription but before translation to exert control over a wide range of biological functions. Extensive research has consistently demonstrated the upregulation of miRNA-21 in glioma, indicating its involvement in diverse biological pathways that facilitate tumor cell survival. By explaining the intricate interplay between miR-21 and the regulation of apoptosis in GBM, this review has the potential to significantly enhance our comprehension of the illness and provide potential targets for therapeutic intervention.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , MicroARNs/metabolismo , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica/genética , Proliferación Celular , Proteínas de Unión al ARN/genética , Proteínas Reguladoras de la Apoptosis/metabolismo
20.
Pathol Res Pract ; 254: 155134, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277746

RESUMEN

Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/ß-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/ß-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/ß-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/ß-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/ß-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/ß-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/ß-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , ARN Largo no Codificante , Masculino , Humanos , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , ARN Largo no Codificante/genética , ARN Circular/genética , Neoplasias de la Próstata/patología , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...