Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroimmunol ; 391: 578365, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38723577

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficiencies in communication, repetitive and stereotyped behavioral patterns, and difficulties in reciprocal social engagement. The presence of immunological dysfunction in ASD has been well established. Aflatoxin B1 (AFB1) is a prevalent mycotoxin found in food and feed, causing immune toxicity and hepatotoxicity. AFB1 is significantly elevated in several regions around the globe. Existing research indicates that prolonged exposure to AFB1 results in neurological problems. The BTBR T+ Itpr3tf/J (BTBR) mice, which were used as an autism model, exhibit the primary behavioral traits that define ASD, such as repeated, stereotyped behaviors and impaired social interactions. The main objective of this work was to assess the toxic impact of AFB1 in BTBR mice. This work aimed to examine the effects of AFB1 on the expression of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 by CD19+ B cells in the spleen of the BTBR using flow cytometry. We also verified the impact of AFB1 exposure on the mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain of BTBR mice using real-time PCR. The findings of our study showed that the mice treated with AFB1 in the BTBR group exhibited a substantial increase in the presence of CD19+Notch-1+, CD19+IL-6+, CD19+MCP-1+, CD19+iNOS+, CD19+GM-CSF+, and CD19+NF-κB p65+ compared to the mice in the BTBR group that were treated with saline. Our findings also confirmed that administering AFB1 to BTBR mice leads to elevated mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain, in comparison to BTBR mice treated with saline. The data highlight that exposure to AFB1 worsens immunological abnormalities by increasing the expression of inflammatory mediators in BTBR mice.

2.
Am J Transl Res ; 16(3): 873-888, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586106

RESUMEN

OBJECTIVES: In this comprehensive study spanning 33 malignancies, we explored the differential expression and prognostic significance of Heparan sulfate 6-O-sulfotransferase 2 (HS6ST2). METHODS: TIMER2, UALCAN, and GEPIA2 were used for the expression analysis. cBioPortal was used for mutational analysis. CancerSEA, STRING, and DAVID, were employed for the single cell sequencing data analysis, protein-protein interaction network development, and gene enrichment analyses, respectively. GSCAlite and RT-qPCR were used for drug sensitivity and expression validation analysis. RESULTS: HS6ST2 exhibited significant (P < 0.05) overexpression in multiple cancers. Prognostically, elevated HS6ST2 expression was significantly associated with poor overall survival (OS) in patients with cervical squamous cell carcinoma (CESC), kidney chromophobe (KICH), lung adenocarcinoma (LUAD), and stomach adenocarcinoma (STAD), emphasizing its potential as a prognostic indicator in these cancers. Moreover, HS6ST2 expression correlated with pathological stages in CESC, KICH, LUAD, and STAD patients. Exploration of genetic alterations using cBioPortal unveiled distinct mutational landscapes, with low mutation frequencies in CESC, KICH, LUAD, and STAD. Additionally, reduced DNA methylation in CESC, KICH, LUAD, and STAD suggested a potential link between hypomethylation and heightened HS6ST2 expression. Analysis of immune cell infiltration revealed a positive correlation between HS6ST2 expression and the infiltration of CD8+ T and CD4+ T cells in CESC, KICH, LUAD, and STAD, highlighting its involvement in the tumor immunology processes. Single-cell functional states analysis demonstrated associations between HS6ST2 and diverse cellular processes. Moreover, gene enrichment analysis revealed the involvement HS6ST2 in crucial cellular activities. GSCAlite analysis underscored the potential of HS6ST2 as a therapeutic target, showing associations with drug sensitivity. Finally, experimental validation through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in LUAD tissues confirmed elevated HS6ST2 expression. CONCLUSION: Overall, this study provides a comprehensive understanding of HS6ST2 in CESC, KICH, LUAD, and STAD, emphasizing its potential as a prognostic biomarker and therapeutic target.

3.
Reprod Toxicol ; : 108599, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679149

RESUMEN

OBJECTIVE: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS: The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS: The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS: These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.

4.
Int J Biol Macromol ; 267(Pt 2): 131517, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621559

RESUMEN

Infection with the hepatitis C virus (HCV) is one of the causes of liver cancer, which is the world's sixth most prevalent and third most lethal cancer. The current treatments do not prevent reinfection; because they are expensive, their usage is limited to developed nations. Therefore, a prophylactic vaccine is essential to control this virus. Hence, in this study, an immunoinformatics method was applied to design a multi-epitope vaccine against HCV. The best B- and T-cell epitopes from conserved regions of the E2 protein of seven HCV genotypes were joined with the appropriate linkers to design a multi-epitope vaccine. In addition, cholera enterotoxin subunit B (CtxB) was included as an adjuvant in the vaccine construct. This study is the first to present this epitopes-adjuvant combination. The vaccine had acceptable physicochemical characteristics. The vaccine's 3D structure was predicted and validated. The vaccine's binding stability with Toll-like receptor 2 (TLR2) and TLR4 was confirmed using molecular docking and molecular dynamics (MD) simulation. The immune simulation revealed the vaccine's efficacy by increasing the population of B and T cells in response to vaccination. In silico expression in Escherichia coli (E. coli) was also successful.


Asunto(s)
Biología Computacional , Epítopos de Linfocito B , Epítopos de Linfocito T , Hepacivirus , Hepatitis C , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Hepacivirus/inmunología , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Humanos , Biología Computacional/métodos , Hepatitis C/prevención & control , Hepatitis C/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/química , Vacunas contra Hepatitis Viral/inmunología , Vacunas contra Hepatitis Viral/química , Simulación por Computador , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/química , Inmunoinformática
5.
Aging (Albany NY) ; 16(3): 2591-2616, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305808

RESUMEN

BACKGROUND: Mounting studies indicate that oxidative stress (OS) significantly contributes to tumor progression. Our study focused on bladder urothelial cancer (BLCA), an escalating malignancy worldwide that is growing rapidly. Our objective was to verify the predictive precision of genes associated with overall survival (OS) by constructing a model that forecasts outcomes for bladder cancer and evaluates the prognostic importance of these genetic markers. METHODS: Transcriptomic data were obtained from TCGA-BLCA and GSE31684, which are components of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. To delineate distinct molecular subtypes, we employed the non-negative matrix factorization (NMF)method. The significance of OS-associated genes in predicting outcomes was assessed using lasso regression, multivariate Cox analysis, and univariate Cox regression analysis. For external validation, we employed the GSE31684 dataset. CIBERSORT was utilized to examine the tumor immune microenvironment (TIME). A nomogram was created and verified using calibration and receiver operating characteristic (ROC) curves, which are based on risk signatures. We examined variations in clinical characteristics and tumor mutational burden (TMB) among groups classified as high-risk and low-risk. To evaluate the potential of immunotherapy, the immune phenomenon score (IPS) was computed based on the risk score. In the end, the pRRophetic algorithm was employed to forecast the IC50 values of chemotherapy medications. RESULTS: In our research, we examined the expression of 275 genes associated with OS in 19 healthy and 414 cancerous tissues of the bladder obtained from the TCGA database. As a result, a new risk signature was created that includes 4 genes associated with OS (RBPMS, CRYAB, P4HB, and PDGFRA). We found two separate groups, C1 and C2, that showed notable variations in immune cells and stromal score. According to the Kaplan-Meier analysis, patients classified as high-risk experienced a considerably reduced overall survival in comparison to those categorized as low-risk (P<0.001). The predictive capability of the model was indicated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve surpassing 0.6. Our model showed consistent distribution of samples from both the GEO database and TCGA data. Both the univariate and multivariate Cox regression analyses validated the importance of the risk score in relation to overall survival (P < 0.001). According to our research, patients with a lower risk profile may experience greater advantages from using a CTLA4 inhibitor, whereas patients with a higher risk profile demonstrated a higher level of responsiveness to Paclitaxel and Cisplatin. In addition, methotrexate exhibited a more positive outcome in patients with low risk compared to those with high risk. CONCLUSIONS: Our research introduces a novel model associated with OS gene signature in bladder cancer, which uncovers unique survival results. This model can assist in tailoring personalized treatment approaches and enhancing patient therapeutic effect in the management of bladder cancer.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Cisplatino , Microambiente Tumoral/genética
6.
Am J Transl Res ; 16(1): 63-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322551

RESUMEN

OBJECTIVES: Cancer, a formidable disease, continues to challenge our understanding and therapeutic approaches. This study delves into the pan-cancer analysis of BCL2 Associated X (BAX) gene expression, seeking to unravel its significance in cancer development, prognosis, and potential therapeutic strategies. METHODS: A combination of bioinformatics and molecular experiments. RESULTS: Our pan-cancer investigation into BAX expression encompassed 33 distinct cancer types, revealing a remarkable and uniform increase in BAX expression. This groundbreaking finding emphasizes the potential universality of BAX's role in cancer development and progression. Further, our study explored the prognostic implications of BAX expression, highlighting a consistent association between up-regulated BAX and poor overall survival (OS) in Liver Hepatocellular Carcinoma (LIHC) and Skin Cutaneous Melanoma (SKCM). These results suggest that BAX may serve as an adverse prognostic indicator in these malignancies, emphasizing the importance of personalized treatment strategies. Epigenetic and genetic analyses of BAX provided valuable insights. Hypomethylation of the BAX promoter region was evident in LIHC and SKCM, which likely contributes to the up-regulation of BAX, while genetic mutations in the BAX gene itself were infrequent in these cancers. Our exploration of BAX-associated signaling pathways and the correlation between BAX expression and CD8+ T cell infiltration shed light on the intricate molecular landscape of cancer. BAX's interaction with key apoptotic and immune-related pathways reinforces its role as a central player in tumor development and the immune microenvironment. Moreover, our drug prediction analysis identified potential therapeutic agents for modulating BAX expression in the context of LIHC and SKCM, bridging the gap between research and clinical application. CONCLUSION: In sum, our comprehensive BAX study not only enhances our understanding of its significance as a biomarker gene but also offers novel avenues for therapeutic interventions, contributing to the ongoing quest for more effective cancer treatments and improved patient care.

7.
J Neuroimmunol ; 386: 578253, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38064869

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by behavior, learning, communication, and social interaction abnormalities in various situations. Individuals with impairments usually exhibit restricted and repetitive actions. The actual cause of ASD is yet unknown. It is believed, however, that a mix of genetic and environmental factors may play a role in its development. Certain metals have been linked to the development of neurological diseases, and the prevalence of ASD has shown a positive association with industrialization. Cadmium chloride (Cd) is a neurotoxic chemical linked to cognitive impairment, tremors, and neurodegenerative diseases. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD and display a range of autistic phenotypes. We looked at how Cd exposure affected the signaling of inflammatory mediators in CD45R-expressing cells in the BTBR mouse model of ASD. In this study, we looked at how Cd affected the expression of numerous markers in the spleen, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. Furthermore, we investigated the effect of Cd exposure on the expression levels of numerous mRNA molecules in brain tissue, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. The RT-PCR technique was used for this analysis. Cd exposure increased the number of CD45R+IFN-γ+, CD45R+IL-6+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+GM-CSF+, CD45R+iNOS+, and CD45R+Notch1+ cells in the spleen of BTBR mice. Cd treatment also enhanced mRNA expression in brain tissue for IFN-γ, IL-6, NF-κB, GM-CSF, iNOS, MCP-1, and Notch1. In general, Cd increases the signaling of inflammatory mediators in BTBR mice. This study is the first to show that Cd exposure causes immune function dysregulation in the BTBR ASD mouse model. As a result, our study supports the role of Cd exposure in the development of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Animales , Trastorno Autístico/inducido químicamente , Trastorno Autístico/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Cadmio/toxicidad , Cadmio/metabolismo , FN-kappa B/metabolismo , Encéfalo/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , ARN Mensajero , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Endogámicos
8.
J Pharm Sci ; 113(4): 906-917, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38042341

RESUMEN

The West Nile virus (WNV) is the causative agent of West Nile disease (WND), which poses a potential risk of meningitis or encephalitis. The aim of the study was to design an epitope-based vaccine for WNV by utilizing computational analyses. The epitope-based vaccine design process encompassed WNV sequence collection, phylogenetic tree construction, and sequence alignment. Computational models identified B-cell and T-cell epitopes, followed by immunological property analysis. Epitopes were then modeled and docked with B-cell receptors, MHC I, and MHC II. Molecular dynamics simulations further explored dynamic interactions between epitopes and receptors. The findings indicated that the B-cell epitope QINHHWHKSGSSIG, along with three T-cell epitopes (FLVHREWFM for MHC I, NPFVSVATANAKVLI for MHC II, and NAYYVMTVGTKTFLV for MHC II), successfully passed the immunological evaluations. These four epitopes were further subjected to docking and molecular dynamics simulation studies. Although each demonstrated favorable affinities with their respective receptors, only NAYYVMTVGTKTFLV displayed a stable interaction with MHC II during MDS analysis, hence emerging as a potential candidate for a WNV epitope-based vaccine. This study demonstrates a comprehensive approach to epitope vaccine design, combining computational analyses, molecular modeling, and simulation techniques to identify potential vaccine candidates for WNV.


Asunto(s)
Virus del Nilo Occidental , Epítopos de Linfocito T , Inmunoinformática , Filogenia , Epítopos de Linfocito B , Simulación del Acoplamiento Molecular , Biología Computacional/métodos , Vacunas de Subunidad
9.
Am J Transl Res ; 15(11): 6451-6463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074804

RESUMEN

BACKGROUND: Oncogenic processes in cancer are often characterized by dysregulation of critical genes. Our study focused on the minichromosome maintenance 10 replication initiation factor (MCM10) gene's expression and its potential diagnostic and prognostic implications in pan-cancer. METHOD: Leveraging large-scale genomic datasets, and experimental validation we embarked on a comprehensive analysis to shed light on the diagnostic and prognostic role of MCM10. RESULTS: Our findings underscore the wide-ranging up-regulation of MCM10 across 24 major cancer types, positioning it as a ubiquitous player in tumorigenesis. Significantly, MCM10 up-regulation was strongly associated with poorer overall survival in Kidney Renal Papillary Cell Carcinoma (KIRP), Liver Hepatocellular Carcinoma (LIHC), and Lung Adenocarcinoma (LUAD), emphasizing its potential as a valuable prognostic marker in these cancers. While genetic mutations often drive oncogenic processes, our mutational analysis revealed the relative stability of MCM10 in KIRP, LIHC, and LUAD. This suggests that epigenetic (hypomethylation) and non-mutational regulatory mechanisms predominantly govern MCM10 expression in these cancer types. Further analyses demonstrated positive correlations between MCM10 expression and immune cell infiltration, particularly CD8+ T cells and CD4+ T cells, offering insights into the gene's influence on the tumor immune microenvironment. Additionally, pathway enrichment analysis highlighted MCM10-associated genes' involvement in crucial signaling pathways, such as the cell cycle, DNA replication, and repair. Exploring the therapeutic potential, we examined important drugs capable of regulating MCM10 expression, opening doors to personalized treatment strategies. CONCLUSION: Our study elucidates the multifaceted roles of MCM10 in KIRP, LIHC, and LUAD. Its pervasive up-regulation, prognostic significance, epigenetic regulation, and influence on the immune microenvironment provide valuable insights into these cancers. This research contributes to the growing body of evidence surrounding MCM10 and invites further investigation, validation, and potential translational efforts to harness its clinical relevance.

10.
Am J Transl Res ; 15(11): 6381-6403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074814

RESUMEN

OBJECTIVES: The aim of this study was to compare the effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) isolated from mice (xenogeneic) and rats (allogeneic) on liver injury induced by carbon tetrachloride (CCl4) as well as to explore the modulatory effects on of oxidative stress, apoptosis, inflammation, and Nrf2 expression. METHODS: Male Wistar rats were intraperitoneally injected with CCl4 (0.5 mL/kg) twice a week for 8 weeks. The animals were intravenously infused with BM-MSCs isolated from male mice or rats (1 × 106 cells/rat/week) into the lateral tail vein for 4 weeks. RESULTS: The treatment with BM-MSCs produced a significant increase in the diminished serum albumin level, a significant decrease in liver lipid peroxidation and an increase in glutathione content as well as SOD, GST, and GPx activities. Furthermore, BM-MSCs from both mice and rats produced a significant decrease in the elevated mRNA expression of liver CYP1A1, MMP-9, procollagen α1, TGF-ß1, and increase in expression of lowered IL-4, IL-10, cluster CD-105, and Oct3/4. In liver of CCl4-injected rats, the lower protein expression of Nrf2 was upregulated and higher expressions of caspase-3, TNF-R1, NF-κB p65, TNF-α, p53, and COX-2 were downregulated by mice and rats' BM-MSCs. Histologically, BM-MSCs from both mice and rats successfully improved liver structural integrity and protected against liver injury. CONCLUSIONS: The rats-derived BM-MSCs were significantly more potent than mice-derived BM-MSCs. Mice BM-MSCs and rats' BM-MSCs acted to improve CCl4-impaired liver function, structural integrity, fibrosis and cirrhosis in male Wistar rats via the suppression of oxidative stress, inflammation, and apoptosis and the enhancement of the antioxidant defense system.

11.
Am J Transl Res ; 15(11): 6464-6475, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074816

RESUMEN

OBJECTIVES: Oncogenic processes in cancer are frequently marked by the dysregulation of critical genes, and PTPN3 (Protein Tyrosine Phosphatase, Non-Receptor Type 3) has emerged as a gene of interest due to its potential involvement in various cellular processes. This study delves into the diagnostic and prognostic implications of PTPN3 in a pan-cancer context. METHODS: Leveraging comprehensive genomic datasets and experimental validation, we aimed to shed light on the role of PTPN3 in cancer. RESULTS: Our findings revealed the pervasive up-regulation of PTPN3 across 33 cancer types, making it a ubiquitous player in tumorigenesis. Of particular note, PTPN3 up-regulation exhibited a strong association with reduced overall survival in breast cancer (BRCA) and lung adenocarcinoma (LUAD). This underscores PTPN3's potential as a valuable prognostic marker in these cancers. While genetic mutations often drive oncogenic processes, our mutational analysis demonstrated the relative stability of PTPN3 in BRCA and LUAD. Promoter methylation analysis showed that hypomethylation plays a predominant role in PTPN3 dysregulation in BRCA and LUAD. Furthermore, our study unveiled positive correlations between PTPN3 expression and CD8+ T cell infiltration, offering insights into the gene's influence on the tumor immune microenvironment. Pathway enrichment analysis highlighted the involvement of PTPN3-associated genes in crucial signaling pathways. In addition, drug prediction analysis pinpointed potential drugs capable of modulating PTPN3 expression, opening avenues for personalized treatment strategies. CONCLUSION: In summary, our study elucidates the multifaceted roles of PTPN3 in BRCA and LUAD, underlining its significant up-regulation, prognostic relevance, epigenetic regulation, and its impact on the tumor immune microenvironment.

12.
J Biomol Struct Dyn ; : 1-9, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064307

RESUMEN

The fibroblast growth factor receptor 3 (FGFR3) is warranted as a promising therapeutic target in bladder cancer as it is described in 75% of papillary bladder tumors. Considering this, the present study was conducted to use different approaches of computer-aided drug discovery (CADD) to identify the best binding compounds against the active pocket of FGFR3. Compared to control pyrimidine derivative, the study identified three promising lead structures; BDC_24037121, BDC_21200852, and BDC_21206757 with binding energy value of -14.80 kcal/mol, -12.22 kcal/mol, and -11.67 kcal/mol, respectively. The control molecule binding energy score was -9.85 kcal/mol. The compounds achieved deep pocket binding and produced balanced interactions of hydrogen bonds and van der Waals. The FGFR3 enzyme residues such as Leu478, Lys508, Glu556, Asn562, Asn622, and Asp635. The molecular dynamic (MD) simulation studies additionally validated the docked conformation stability with respect to FGFR3 with a mean root mean square deviation (RMSD) value of < 3 Å. The root mean square fluctuation (RMSF) complements the complexes structural stability and the residues showed less fluctuation in the presence of compounds. The Poisson-Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods revalidated compounds better binding and highlighted van der Waals energy to dominate the overall net energy. The docked stability was additionally confirmed by WaterSwap and AMBER normal mode entropy energy analyses. In a nutshell, the compounds shortlisted in this study are promising in term of theoretical binding affinity for FGFR3 but experimental validation is needed.Communicated by Ramaswamy H. Sarma.

13.
Front Immunol ; 14: 1332378, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143752

RESUMEN

Escherichia fergusonii a gram-negative rod-shaped bacterium in the Enterobacteriaceae family, infect humans, causing serious illnesses such as urinary tract infection, cystitis, biliary tract infection, pneumonia, meningitis, hemolytic uremic syndrome, and death. Initially treatable with penicillin, antibiotic misuse led to evolving resistance, including resistance to colistin, a last-resort drug. With no licensed vaccine, the study aimed to design a multi-epitope vaccine against E. fergusonii. The study started with the retrieval of the complete proteome of all known strains and proceeded to filter the surface exposed virulent proteins. Seventeen virulent proteins (4 extracellular, 4 outer membranes, 9 periplasmic) with desirable physicochemical properties were identified from the complete proteome of known strains. Further, these proteins were processed for B-cell and T-cell epitope mapping. Obtained epitopes were evaluated for antigenicity, allergenicity, solubility, MHC-binding, and toxicity and the filtered epitopes were fused by specific linkers and an adjuvant into a vaccine construct. Structure of the vaccine candidate was predicted and refined resulting in 78.1% amino acids in allowed regions and VERIFY3D score of 81%. Vaccine construct was docked with TLR-4, MHC-I, and MHC-II, showing binding energies of -1040.8 kcal/mol, -871.4 kcal/mol, and -1154.6 kcal/mol and maximum interactions. Further, molecular dynamic simulation of the docked complexes was carried out resulting in a significant stable nature of the docked complexes (high B-factor and deformability values, lower Eigen and high variance values) in terms of intermolecular binding conformation and interactions. The vaccine was also reported to stimulate a variety of immunological pathways after administration. In short, the designed vaccine revealed promising predictions about its immune protective potential against E. fergusonii infections however experimental validation is needed to validate the results.


Asunto(s)
Epítopos de Linfocito T , Proteoma , Humanos , Simulación del Acoplamiento Molecular , Vacunas Bacterianas , Proteínas de la Membrana
14.
Mol Biotechnol ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37934390

RESUMEN

Proteus penneri (P. penneri) is a bacillus-shaped, gram-negative, facultative anaerobe bacterium that is primarily an invasive pathogen and the etiological agent of several hospital-associated infections. P. penneri strains are naturally resistant to macrolides, amoxicillin, oxacillin, penicillin G, and cephalosporins; in addition, no vaccines are available against these strains. This warrants efforts to propose a theoretical based multi-epitope vaccine construct to prevent pathogen infections. In this research, reverse vaccinology bioinformatics and immunoinformatics approaches were adopted for vaccine target identification and construction of a multi-epitope vaccine. In the first phase, a core proteome dataset of the targeted pathogen was obtained using the NCBI database and subjected to bacterial pan-genome analysis using bacterial pan-genome analysis (BPGA) to predict core protein sequences which were then used to find good vaccine target candidates. This identified two proteins, Hcp family type VI secretion system effector and superoxide dismutase family protein, as promising vaccine targets. Afterward using the IEDB database, different B-cell and T-cell epitopes were predicted. A set of four epitopes "KGSVNVQDRE, NTGKLTGTR, IIHSDSWNER, and KDGKPVPALK" were chosen for the development of a multi-epitope vaccine construct. A 183 amino acid long vaccine design was built along with "EAAAK" and "GPGPG" linkers and a cholera toxin B-subunit adjuvant. The designed vaccine model comprised immunodominant, non-toxic, non-allergenic, and physicochemical stable epitopes. The model vaccine was docked with MHC-I, MHC-II, and TLR-4 immune cell receptors using the Cluspro2.0 web server. The binding energy score of the vaccine was - 654.7 kcal/mol for MHC-I, - 738.4 kcal/mol for MHC-II, and - 695.0 kcal/mol for TLR-4. A molecular dynamic simulation was done using AMBER v20 package for dynamic behavior in nanoseconds. Additionally, MM-PBSA binding free energy analysis was done to test intermolecular binding interactions between docked molecules. The MM-GBSA net binding energy score was - 148.00 kcal/mol, - 118.00 kcal/mol, and - 127.00 kcal/mol for vaccine with TLR-4, MHC-I, and MHC-II, respectively. Overall, these in silico-based predictions indicated that the vaccine is highly promising in terms of developing protective immunity against P. penneri. However, additional experimental validation is required to unveil the real immune response to the designed vaccine.

15.
J Biomol Struct Dyn ; : 1-14, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962871

RESUMEN

Helicobacter pylori infects 50% of the world population and in 80% of cases, the infection progresses to the point where an ulcer develops leading to gastric cancer (GC). This study aimed to prevent GC by predicting Hub genes that are inducing GC. Furthermore, the study objective was to screen inhibitory molecules that block the function of predicted genes through several biophysical approaches. These proteins, such as Mucin 4 (MUC4) and Baculoviral IAP repeat containing 3 (BIRC3), had LogFC values of 2.28 and 3.39, respectively, and were found to be substantially expressed in those who had H. pylori infection. The MUC4 and BIRC3 inhibit apoptosis of infected cells and promote cancerous cell survival. The proteins were examined for their Physico-chemical characteristics, 3D structure and secondary structure analysis, solvent assessable surface area (SASA), active site identification, and network analysis. The MUC4 and BIRC3 expression was inhibited by docking eighty different compounds collected from the ZINC database. Fifty-seven compounds were successfully docked into the active site resulting in the lowest binding energy scores. The ZINC585267910 and ZINC585268691 compounds showed the lowest binding energy of -8.5 kcal/mol for MUC4 and -7.1 kcal/mol for BIRC3, respectively, and were considered best-docked solutions for molecular dynamics simulations. The mean root mean square deviation (RMSD) value for the ZINC585267910-MUC4 complex was 0.86 Å and the ZINC585268691-BIRC3 complex was 1.01 Å. The net MM/GBSA energy value of the ZINC585267910-MUC4 complex estimated was -46.84 kcal/mol and that of the ZINC585268691-BIRC3 complex was -44.84 kcal/mol. In a nutshell, the compounds might be investigated further as an inhibitor of the said proteins to stop the progress of GC induced by H. pylori.Communicated by Ramaswamy H. Sarma.

16.
Brain Sci ; 13(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38002479

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, reciprocal social interactions, restricted sociability deficits, and stereotyped behavioral patterns. Environmental factors and genetic susceptibility have been implicated in an increased risk of ASD. Aflatoxin B1 (AFB1) is a typical contaminant of food and feed that causes severe immune dysfunction in humans and animals. Nevertheless, the impact of ASD on behavioral and immunological responses has not been thoroughly examined. To investigate this phenomenon, we subjected BTBR T+Itpr3tf/J (BTBR) mice to AFB1 and evaluated their marble-burying and self-grooming behaviors and their sociability. The exposure to AFB1 resulted in a notable escalation in marble-burying and self-grooming activities while concurrently leading to a decline in social contacts. In addition, we investigated the potential molecular mechanisms that underlie the impact of AFB1 on the production of Th1 (IFN-γ, STAT1, and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A, IL-21, RORγT, and STAT3), Th22 (IL-22, AhR, and TNF-α), and T regulatory (Treg) (IL-10, TGF-ß1, and FoxP3) cells in the spleen. This was achieved using RT-PCR and Western blot analyses to assess mRNA and protein expression in brain tissue. The exposure to AFB1 resulted in a significant upregulation of various immune-related factors, including IFN-γ, STAT1, T-bet, IL-9, IRF4, IL-17A, IL-21, RORγ, STAT3, IL-22, AhR, and TNF-α in BTBR mice. Conversely, the production of IL-10, TGF-ß1, and FoxP3 by CD4+ T cells was observed to be downregulated. Exposure to AFB1 demonstrated a notable rise in Th1/Th9/Th22/Th17 levels and a decrease in mRNA and protein expression of Treg. The results above underscore the significance of AFB1 exposure in intensifying neurobehavioral and immunological abnormalities in BTBR mice, hence indicating the necessity for a more comprehensive investigation into the contribution of AFB1 to the development of ASD.

17.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003408

RESUMEN

Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.


Asunto(s)
Trastorno del Espectro Autista , Interleucina-10 , Humanos , Ratones , Animales , Interleucina-10/farmacología , Plomo/toxicidad , Trastorno del Espectro Autista/inducido químicamente , Interleucina-9/farmacología , Transducción de Señal , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , ARN Mensajero , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
18.
Am J Transl Res ; 15(10): 6058-6070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37969199

RESUMEN

OBJECTIVES: In this comprehensive breast cancer (BC) study, we aimed to identify, validate, and characterize key biomarkers with significant implications in BC diagnosis, prognosis, and as therapeutic targets. METHODS: Our research strategy involved a multi-level methodology, combining bioinformatic analysis with experimental validation. RESULTS: Initially, we conducted an extensive literature search to identify BC biomarkers, selecting those with reported accuracies exceeding 20% in specificity and sensitivity. This yielded nine candidate biomarkers, which we subsequently analyzed using Cytoscape to identify a few key biomarkers. Based on the degree method, we denoted four key biomarkers, including progesterone receptor (PGR), epidermal growth factor receptor (EGFR), estrogen receptor 1 (ESR1), and Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2). Expression analysis using The Cancer Genome Atlas (TCGA) dataset revealed that PGR and EGFR exhibited significant (p-value < 0.05) down-regulation in BC samples when compared to controls, while ESR1 and ERBB2 showed up-regulation. To strengthen our findings, we collected clinical BC tissue samples from Pakistani patients and performed expression verification using real-time quantitative polymerase chain reaction (RT-qPCR). The results aligned with our initial TCGA dataset analysis, further validating the differential expression of these key biomarkers in BC. Furthermore, we utilized receiver operating characteristic (ROC) curves to demonstrate the diagnostic use of these biomarkers. Our analysis underscored their accuracy and sensitivity as diagnostic markers for BC. Survival analysis using the Kaplan-Meier Plotter tool revealed a prognostic significance of PGR, ESR1, EGFR, and ERBB2. Their expression levels were associated with poor overall survival (OS) of BC patients, shedding light on their roles as prognostic indicators in BC. Lastly, we explored DrugBank to identify drugs that may reverse the expression patterns , and estradiol, decitabine, and carbamazepine were singled out. CONCLUSION: Our study gives valuable insight into BC biomarkers, for diagnosis and prognosis. These findings have implications for BC management using personalized and targeted therapeutic approaches for BC patients.

19.
Am J Transl Res ; 15(10): 6042-6057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37969207

RESUMEN

BACKGROUND: Due to the lack of sensitive diagnostic biomarkers for osteoporosis (OP), there is an urgent need to identify and uncover biomarkers associated with the disease in order to facilitate early clinical diagnosis and effective intervention strategies. METHODS: GEO2R was employed to conduct a screening of differentially expressed genes (DEGs) within the transcriptome sequencing data obtained from blood samples of OP patients within the GSE163849 dataset. Subsequently, we conducted expression confirmation of the identified DEGs using an additional dataset, GSE35959. To further explore Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, MicroRNA (miRNA) interactions, and drug predictions, we employed the DAVID, miRTarBase, and DrugBank databases. For validation purposes, clinical OP samples paired with normal controls were collected from the Pakistani population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to assess the expression levels of DEGs and miRNA, while targeted bisulfite sequencing (bisulfite-seq) analysis was used to investigate methylation patterns. DNA and RNA from clinical OP and normal control samples were extracted using appropriate methods. RESULTS: Out of total identified 269 DEGs, EGFR (epidermal growth factor receptor), HMOX1 (heme oxygenase-1), PGR (progesterone receptor), CXCL10 (C-X-C motif chemokine ligand 10), CCL5 (C-C motif chemokine ligand 5), and IL12B (interleukin 12B) were prioritized as top DEGs in OP patients. Expression validation of these genes on additional Gene Expression Omnibus (GEO) dataset and Pakistani OP patients revealed consistent significant up-regulation of these genes in OP patients. Receiver operating characteristic (ROC) analysis demonstrated that these DEGs displayed considerable diagnostic accuracy for detecting OP. Targeted bisulfite-seq analysis further revealed that EGFR, HMOX1, PGR, CXCL10, CCL5, and IL12B were hypomethylated in OP patients. Moreover, has-miR-27a-5p, a common expression regulator of the EGFR, HMOX1, PGR, CXCL10, CCL5, and IL12B was also significantly down-regulated in OP patients. CONCLUSION: The DEGs that have been identified hold significant potential for the future development of diagnostic and treatment approaches for OP in preclinical and clinical applications.

20.
Auton Neurosci ; 250: 103132, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38000119

RESUMEN

PURPOSE: To address recent concerns of postural orthostatic tachycardia syndrome (POTS) occurring after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) vaccination. METHODS: We searched PubMed, Web of Science, and Scopus as of 1st June 2023. We performed a systematic review and meta-analysis of pooled POTS rate in SARS-CoV-2-infected and COVID-19-vaccinated groups from epidemiological studies, followed by subgroup analyses by characteristic. Meta-analysis of risk ratio was conducted to compare POTS rate in infected versus uninfected groups. Meta-analysis of demographics was also performed to compare cases of post-infection and post-vaccination POTS from case reports and series. RESULTS: We estimated the pooled POTS rate of 107.75 (95 % CI: 9.73 to 273.52) and 3.94 (95 % CI: 0 to 16.39) cases per 10,000 (i.e., 1.08 % and 0.039 %) in infected and vaccinated individuals based on 5 and 2 studies, respectively. Meta-regression revealed age as a significant variable influencing 86.2 % variance of the pooled POTS rate in infected population (P < 0.05). Moreover, POTS was 2.12-fold more likely to occur in infected than uninfected individuals (RR = 2.12, 95 % CI: 1.71 to 2.62, P < 0.001). Meta-analyzed demographics for cases of post-infection (n = 43) and post-vaccination (n = 17) POTS found no significant differences in several variables between groups, except that the time from exposure to symptom onset was shorter for cases of post-vaccination POTS (P < 0.05). CONCLUSION: Although evidence is limited for post-vaccination POTS, our study showed that POTS occur more frequently following SARS-CoV-2 infection than COVID-19 vaccination.


Asunto(s)
COVID-19 , Síndrome de Taquicardia Postural Ortostática , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la COVID-19 , Demografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...