Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37078701

RESUMEN

Oligodendrocytes in the central nervous system exhibit significant variability in the number of myelin sheaths that are supported by each cell, ranging from 1 to 50 (1-8). Myelin production during development is dynamic and involves both sheath formation and loss (3, 9-13). However, how these parameters are balanced to generate this heterogeneity in sheath number has not been thoroughly investigated. To explore this question, we combined extensive time-lapse and longitudinal imaging of oligodendrocytes in the developing zebrafish spinal cord to quantify sheath initiation and loss. Surprisingly, we found that oligodendrocytes repetitively ensheathed the same axons multiple times before any stable sheaths were formed. Importantly, this repetitive ensheathment was independent of neuronal activity. At the level of individual oligodendrocytes, each cell initiated a highly variable number of total ensheathments. However, ~80-90% of these ensheathments always disappeared, an unexpectedly high, but consistent rate of loss. The dynamics of this process indicated rapid membrane turnover as ensheathments were formed and lost repetitively on each axon. To better understand how these sheath initiation dynamics contribute to sheath accumulation and stabilization, we disrupted membrane recycling by expressing a dominant-negative mutant form of Rab5. Oligodendrocytes over-expressing this mutant did not show a change in early sheath initiation dynamics but did lose a higher percentage of ensheathments in the later stabilization phase. Overall, oligodendrocyte sheath number is heterogeneous because each cell repetitively initiates a variable number of total ensheathments that are resolved through a consistent stabilization rate.


Asunto(s)
Axones , Pez Cebra , Animales , Axones/fisiología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Sistema Nervioso Central
2.
J Neurosci ; 43(4): 540-558, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36460463

RESUMEN

In the CNS, oligodendrocyte progenitor cells (OPCs) differentiate into mature oligodendrocytes to generate myelin, an essential component for normal nervous system function. OPC differentiation is driven by signaling pathways, such as mTOR, which functions in two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), containing Raptor or Rictor, respectively. In the current studies, mTORC2 signaling was selectively deleted from OPCs in PDGFRα-Cre X Rictorfl/fl mice. This study examined developmental myelination in male and female mice, comparing the impact of mTORC2 deletion in the corpus callosum and spinal cord. In both regions, Rictor loss in OPCs resulted in early reduction in myelin RNAs and proteins. However, these deficits rapidly recovered in spinal cord, where normal myelin was noted at P21 and P45. By contrast, the losses in corpus callosum resulted in severe hypomyelination and increased unmyelinated axons. The hypomyelination may result from decreased oligodendrocytes in the corpus callosum, which persisted in animals as old as postnatal day 350. The current studies focus on uniquely altered signaling pathways following mTORC2 loss in developing oligodendrocytes. A major mTORC2 substrate is phospho-Akt-S473, which was significantly reduced throughout development in both corpus callosum and spinal cord at all ages measured, yet this had little impact in spinal cord. Loss of mTORC2 signaling resulted in decreased expression of actin regulators, such as gelsolin in corpus callosum, but only minimal loss in spinal cord. The current study establishes a regionally specific role for mTORC2 signaling in OPCs, particularly in the corpus callosum.SIGNIFICANCE STATEMENT mTORC1 and mTORC2 signaling has differential impact on myelination in the CNS. Numerous studies identify a role for mTORC1, but deletion of Rictor (mTORC2 signaling) in late-stage oligodendrocytes had little impact on myelination in the CNS. However, the current studies establish that deletion of mTORC2 signaling from oligodendrocyte progenitor cells results in reduced myelination of brain axons. These studies also establish a regional impact of mTORC2, with little change in spinal cord in these conditional Rictor deletion mice. Importantly, in both brain and spinal cord, mTORC2 downstream signaling targets were impacted by Rictor deletion. Yet, these signaling changes had little impact on myelination in spinal cord, while they resulted in long-term alterations in myelination in brain.


Asunto(s)
Células Precursoras de Oligodendrocitos , Animales , Femenino , Masculino , Ratones , Diferenciación Celular/fisiología , Sistema Nervioso Central/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones Noqueados , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
Genetics ; 210(4): 1227-1237, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30301740

RESUMEN

Cells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA-damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA-damage tolerance pathway includes two subpathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence subpathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA-processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1 (Suppresses postrecruitment gene number 1), a chromatin-binding and transcription elongation factor, in DNA-damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA-damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological life span. We attribute these effects to an increased usage of the template switch branch of the DNA-damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild-type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.


Asunto(s)
Envejecimiento/genética , Inestabilidad Genómica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética
4.
Nucleic Acids Res ; 46(5): 2321-2334, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29300974

RESUMEN

The process of transcriptional elongation by RNA polymerase II (RNAPII) in a chromatin context involves a large number of crucial factors. Spn1 is a highly conserved protein encoded by an essential gene and is known to interact with RNAPII and the histone chaperone Spt6. Spn1 negatively regulates the ability of Spt6 to interact with nucleosomes, but the chromatin binding properties of Spn1 are largely unknown. Here, we demonstrate that full length Spn1 (amino acids 1-410) binds DNA, histones H3-H4, mononucleosomes and nucleosomal arrays, and has weak nucleosome assembly activity. The core domain of Spn1 (amino acids 141-305), which is necessary and sufficient in Saccharomyces cerevisiae for growth under ideal growth conditions, is unable to optimally interact with histones, nucleosomes and/or DNA and fails to assemble nucleosomes in vitro. Although competent for binding with Spt6 and RNAPII, the core domain derivative is not stably recruited to the CYC1 promoter, indicating chromatin interactions are an important aspect of normal Spn1 functions in vivo. Moreover, strong synthetic genetic interactions are observed with Spn1 mutants and deletions of histone chaperone genes. Taken together, these results indicate that Spn1 is a histone binding factor with histone chaperone functions.


Asunto(s)
Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citocromos c/genética , ADN/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/metabolismo
5.
J Invest Dermatol ; 133(5): 1286-93, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23190898

RESUMEN

Melanoma is an aggressive cancer that metastasizes rapidly and is refractory to conventional chemotherapies. Identifying microRNAs (miRNAs) that are responsible for this pathogenesis is therefore a promising means of developing new therapies. We identified miR-26a through microarray and quantitative reverse-transcription-PCR (qRT-PCR) experiments as an miRNA that is strongly downregulated in melanoma cell lines as compared with primary melanocytes. Treatment of cell lines with miR-26a mimic caused significant and rapid cell death compared with a negative control in most melanoma cell lines tested. In surveying targets of miR-26a, we found that protein levels of SMAD1 (mothers against decapentaplegic homolog 1) and BAG-4/SODD were strongly decreased in sensitive cells treated with miR-26a mimic as compared with the control. The luciferase reporter assays further demonstrated that miR-26a can repress gene expression through the binding site in the 3' untranslated region (3'UTR) of SODD (silencer of death domains). Knockdown of these proteins with small interfering RNA (siRNA) showed that SODD has an important role in protecting melanoma cells from apoptosis in most cell lines sensitive to miR-26a, whereas SMAD1 may have a minor role. Furthermore, transfecting cells with a miR-26a inhibitor increased SODD expression. Our findings indicate that miR-26a replacement is a potential therapeutic strategy for metastatic melanoma, and that SODD, in particular, is a potentially useful therapeutic target.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Apoptosis/fisiología , Regulación hacia Abajo/fisiología , Melanoma/metabolismo , MicroARNs/metabolismo , Neoplasias Cutáneas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/patología , MicroARNs/genética , MicroARNs/farmacología , Análisis por Micromatrices , Neoplasias Cutáneas/patología , Proteína Smad1/efectos de los fármacos , Proteína Smad1/metabolismo , Transfección
6.
J Mol Biol ; 404(1): 1-15, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20875428

RESUMEN

Spn1/Iws1 plays essential roles in the regulation of gene expression by RNA polymerase II (RNAPII), and it is highly conserved in organisms ranging from yeast to humans. Spn1 physically and/or genetically interacts with RNAPII, TBP (TATA-binding protein), TFIIS (transcription factor IIS), and a number of chromatin remodeling factors (Swi/Snf and Spt6). The central domain of Spn1 (residues 141-305 out of 410) is necessary and sufficient for performing the essential functions of SPN1 in yeast cells. Here, we report the high-resolution (1.85 Å) crystal structure of the conserved central domain of Saccharomyces cerevisiae Spn1. The central domain is composed of eight α-helices in a right-handed superhelical arrangement and exhibits structural similarity to domain I of TFIIS. A unique structural feature of Spn1 is a highly conserved loop, which defines one side of a pronounced cavity. The loop and the other residues forming the cavity are highly conserved at the amino acid level among all Spn1 family members, suggesting that this is a signature motif for Spn1 orthologs. The locations and the molecular characterization of temperature-sensitive mutations in Spn1 indicate that the cavity is a key attribute of Spn1 that is critical for its regulatory functions during RNAPII-mediated transcriptional activity.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Factores de Transcripción/química , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Mutación Missense , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...