Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1199357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415606

RESUMEN

Intracellular heme formation and trafficking are fundamental processes in living organisms. Bacteria and archaea utilize three biogenesis pathways to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro'gen III). In this study, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro'gen III into heme in Campylobacter jejuni, demonstrating that this bacterium utilizes the protoporphyrin-dependent (PPD) pathway. In general, limited knowledge exists regarding the mechanisms by which heme b reaches its target proteins after this final step. Specifically, the chaperones necessary for trafficking heme to prevent the cytotoxic effects associated with free heme remain largely unidentified. In C. jejuni, we identified a protein named CgdH2 that binds heme with a dissociation constant of 4.9 ± 1.0 µM, and this binding is impaired upon mutation of residues histidine 45 and 133. We demonstrate that C. jejuni CgdH2 establishes protein-protein interactions with ferrochelatase, suggesting its role in facilitating heme transfer from ferrochelatase to CgdH2. Furthermore, phylogenetic analysis reveals that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is the first protein identified as an acceptor of intracellularly formed heme, expanding our knowledge of the mechanisms underlying heme trafficking within bacterial cells.

2.
Bioprocess Biosyst Eng ; 45(10): 1635-1644, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35974197

RESUMEN

L-Asparaginase (L-ASNase) is an enzyme applied in the treatment of lymphoid malignancies. However, an innovative L-ASNase with high yield and lower side effects than the commercially available preparations are still a market requirement. Here, a new-engineered Bacillus subtilis strain was evaluated for Aliivibrio fischeri L-ASNase II production, being the bioprocess development and the enzyme characterization studied. The pBS0E plasmid replicative in Bacillus sp and containing PxylA promoter inducible by xylose and its repressive molecule sequence (XylR) was used for the genetic modification. Initially, cultivations were carried out in orbital shaker, and then the process was scaled up to stirred tank bioreactor (STB). After the bioprocess, the cells were recovered and submitted to ultrasound sonication for cells disruption and intracellular enzyme recovery. The enzymatic extract was characterized to assess its biochemical, kinetic and thermal properties using L-Asparagine and L-Glutamine as substrates. The results indicated the potential enzyme production in STB achieving L-ASNase activity up to 1.539 U mL-1. The enzymatic extract showed an optimum pH of 7.5, high L-Asparagine affinity (Km = 1.2275 mmol L-1) and low L-Glutaminase activity (0.568-0.738 U mL-1). In addition, thermal inactivation was analyzed by two different Kinect models to elucidate inactivation mechanisms, low kinetic thermal inactivation constants for 25 ºC and 37 ºC (0.128 and 0.148 h-1, respectively) indicate an elevated stability. The findings herein show that the produced recombinant L-ASNase has potential to be applied for pharmaceutical purposes.


Asunto(s)
Antineoplásicos , Productos Biológicos , Aliivibrio fischeri , Antineoplásicos/química , Asparaginasa/química , Asparaginasa/genética , Asparaginasa/uso terapéutico , Asparagina , Bacillus subtilis/genética , Glutaminasa , Glutamina , Preparaciones Farmacéuticas , Xilosa
3.
Molecules ; 27(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35164193

RESUMEN

L-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme's single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse. Silica is a promising material due to its low-cost, biological compatibility, and tunable physicochemical characteristics if properly functionalized. Ionic liquids (ILs) are designer compounds that allow the tailoring of their physicochemical properties for a given task. If properly designed, bioconjugates combine the features of the selected ILs with those of the support used, enabling the simple recovery and reuse of the enzyme. In this work, silica-based supported ionic liquid-like phase (SSILLP) materials with quaternary ammoniums and chloride as the counterion were studied as novel supports for ASNase immobilization since it has been reported that ammonium ILs have beneficial effects on enzyme stability. SSILLP materials were characterized by elemental analysis and zeta potential. The immobilization process was studied and the pH effect, enzyme/support ratio, and contact time were optimized regarding the ASNase enzymatic activity. ASNase-SSILLP bioconjugates were characterized by ATR-FTIR. The bioconjugates displayed promising potential since [Si][N3444]Cl, [Si][N3666]Cl, and [Si][N3888]Cl recovered more than 92% of the initial ASNase activity under the optimized immobilization conditions (pH 8, 6 × 10-3 mg of ASNase per mg of SSILLP material, and 60 min). The ASNase-SSILLP bioconjugates showed more enhanced enzyme reuse than reported for other materials and immobilization methods, allowing five cycles of reaction while keeping more than 75% of the initial immobilized ASNase activity. According to molecular docking studies, the main interactions established between ASNase and SSILLP materials correspond to hydrophobic interactions. Overall, it is here demonstrated that SSILLP materials are efficient supports for ASNase, paving the way for their use in the pharmaceutical and food industries.


Asunto(s)
Asparaginasa/química , Líquidos Iónicos/química , Dióxido de Silicio/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier
4.
Sci Rep ; 11(1): 21529, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728685

RESUMEN

L-asparaginase (ASNase, EC 3.5.1.1) is an enzyme that catalyzes the L-asparagine hydrolysis into L-aspartic acid and ammonia, being mainly applied in pharmaceutical and food industries. However, some disadvantages are associated with its free form, such as the ASNase short half-life, which may be overcome by enzyme immobilization. In this work, the immobilization of ASNase by adsorption over pristine and modified multi-walled carbon nanotubes (MWCNTs) was investigated, the latter corresponding to functionalized MWCNTs through a hydrothermal oxidation treatment. Different operating conditions, including pH, contact time and ASNase/MWCNT mass ratio, as well as the operational stability of the immobilized ASNase, were evaluated. For comparison purposes, data regarding the ASNase immobilization with pristine MWCNT was detailed. The characterization of the ASNase-MWCNT bioconjugate was addressed using different techniques, namely Transmission Electron Microscopy (TEM), Thermogravimetric Analysis (TGA) and Raman spectroscopy. Functionalized MWCNTs showed promising results, with an immobilization yield and a relative recovered activity of commercial ASNase above 95% under the optimized adsorption conditions (pH 8, 60 min of contact and 1.5 × 10-3 g mL-1 of ASNase). The ASNase-MWCNT bioconjugate also showed improved enzyme operational stability (6 consecutive reaction cycles without activity loss), paving the way for its use in industrial processes.


Asunto(s)
Asparaginasa/metabolismo , Asparagina/metabolismo , Enzimas Inmovilizadas/metabolismo , Nanotubos de Carbono/química , Asparaginasa/química , Catálisis , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Temperatura
5.
Appl Microbiol Biotechnol ; 105(11): 4515-4534, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34059941

RESUMEN

In the past decades, the production of biopharmaceuticals has gained high interest due to its great sensitivity, specificity, and lower risk of negative effects to patients. Biopharmaceuticals are mostly therapeutic recombinant proteins produced through biotechnological processes. In this context, L-asparaginase (L-asparagine amidohydrolase, L-ASNase (E.C. 3.5.1.1)) is a therapeutic enzyme that has been abundantly studied by researchers due to its antineoplastic properties. As a biopharmaceutical, L-ASNase has been used in the treatment of acute lymphoblastic leukemia (ALL), acute myeloblastic leukemia (AML), and other lymphoid malignancies, in combination with other drugs. Besides its application as a biopharmaceutical, this enzyme is widely used in food processing industries as an acrylamide mitigation agent and as a biosensor for the detection of L-asparagine in physiological fluids at nano-levels. The great demand for L-ASNase is supplied by recombinant enzymes from Escherichia coli and Erwinia chrysanthemi. However, production processes are associated to low yields and proteins associated to immunogenicity problems, which leads to the search for a better enzyme source. Considering the L-ASNase pharmacological and food importance, this review provides an overview of the current biotechnological developments in L-ASNase production and biochemical characterization aiming to improve the knowledge about its production. KEY POINTS: • Microbial enzyme applications as biopharmaceutical and in food industry • Biosynthesis process: from the microorganism to bioreactor technology • Enzyme activity and kinetic properties: crucial for the final application.


Asunto(s)
Antineoplásicos/metabolismo , Asparaginasa/biosíntesis , Asparagina , Biotecnología , Dickeya chrysanthemi , Escherichia coli , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas Recombinantes/biosíntesis
6.
Phys Chem Chem Phys ; 23(7): 4133-4140, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33595039

RESUMEN

Although aqueous biphasic systems have been largely investigated in the separation and/or purification of biocompounds, their potential as reaction media to design integrated reaction-separation processes has been less explored. In this work aqueous biphasic systems (ABSs) composed of polypropylene glycol of molecular weight 400 g mol-1 (PPG 400) and different polyethylene glycols (PEGs) were characterized, and investigated for integrated reaction-separation processes, i.e. in the nucleophilic degradation of diazinon and further separation of reaction products by taking advantage of the lower-critical solution temperature (LCST) behaviour of these ABSs. The nucleophilic degradation of diazinon was carried out in the monophasic regime at 298 K, after which an increase in temperature (up to 313 K) allowed the product separation by two-phase formation (thermoreversible systems). The reaction kinetics and reaction pathways have been determined. The reaction kinetic increases as the PEG molecular weight decreases, with the half-life values obtained being competitive to those previously reported using volatile organic solvents as solvent media and significantly higher than under alkaline hydrolysis. One reaction pathway occurs in ABSs comprising PEGs of higher molecular weights, whereas in the ABS composed of PEG 600 two reaction pathways have been identified, meaning that the reaction pathways can be tailored by changing the PEG nature. ABSs formed by PEGs of lower molecular weights were identified as the most promising option to separate the pesticide degradation products by simply applying changes in temperature.

7.
Int J Biol Macromol ; 150: 914-921, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32068054

RESUMEN

Immunoglobulin G (IgG) has been used in the treatment of cancer, autoimmune diseases and neurological disorders, however, the current technologies to purify and recover IgG from biological media are of high-cost and time-consuming, resulting in high-cost products. In this sense, the search for cost-effective technologies to obtain highly pure and active IgG is highly required. The present work proposes a simple and efficient method for the purification and recovery of IgG from rabbit serum using magnetic iron oxide nanoparticles (magnetite, Fe3O4) coated with hybrid shells of a siliceous material modified with the anionic polysaccharide κ-carrageenan. Experimental parameters such as pH, contact time between the hybrid magnetic nanoparticles (HMNPs) and rabbit serum, and total protein concentration or dilution factor of serum were evaluated. The best results were achieved at pH 5.0, with a contact time of 60 min and using a rabbit serum with a total protein concentration of 4.8 mg·mL-1. Under these conditions, it was obtained an IgG purification factor and adsorption yield onto the HMNPs of 3.0 and 90%, respectively. The desorption of IgG from the HMNPs was evaluated using two strategies: a KCl aqueous solution and buffered aqueous solutions. Comparing to the initial rabbit serum, an IgG purification factor of 2.7 with a recovery yield of 74% were obtained using a buffered aqueous solution at pH 7.0. After desorption, the secondary structure of IgG and other proteins was evaluated by circular dichroism and no changes in the secondary structure were observed, meaning that the IgG integrity is kept after the adsorption and desorption steps. In summary, the application of HMNPs in the purification of IgG from serum samples has a high potential as a new downstream platform.


Asunto(s)
Carragenina/química , Inmunoglobulina G/química , Inmunoglobulina G/aislamiento & purificación , Nanopartículas de Magnetita/química , Adsorción , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Concentración de Iones de Hidrógeno , Inmunoglobulina G/sangre , Tamaño de la Partícula , Conejos , Agua , Difracción de Rayos X
8.
RSC Adv ; 10(52): 31205-31213, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-35520670

RESUMEN

The enzyme l-asparaginase (ASNase) presents effective antineoplastic properties used for acute lymphoblastic leukemia treatment besides their potential use in the food sector to decrease the acrylamide formation. Considering their applications, the improvement of this enzyme's properties by efficient immobilization techniques is in high demand. Carbon nanotubes are promising enzyme immobilization supports, since these materials have increased surface area and effective capacity for enzyme loading. Accordingly, in this study, multi-walled carbon nanotubes (MWCNTs) were explored as novel supports for ASNase immobilization by a simple adsorption method. The effect of pH and contact time of immobilization, as well as the ASNase to nanoparticles mass ratio, were optimized according to the enzyme immobilization yield and relative recovered activity. The enzyme-MWCNTs bioconjugation was confirmed by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman and transmission electron microscopy (TEM) studies. MWCNTs have a high ASNase loading capacity, with a maximum immobilization yield of 90%. The adsorbed ASNase retains 90% of the initial enzyme activity at the optimized conditions (pH 8.0, 60 min, and 1.5 × 10-3 g mL-1 of ASNase). According to these results, ASNase immobilized onto MWCNTs can find improved applications in several areas, namely biosensors, medicine and food industry.

9.
Green Chem ; 20(8): 1906-1916, 2018 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-30271275

RESUMEN

Phenolic acids are ubiquitous biomolecules exhibiting a wide range of physiological properties, with application in the pharmaceutical and nutraceutical fields. In this work, aqueous biphasic systems (ABS) formed by polyethylene glycol and sodium polyacrylate, and inorganic salts or ionic liquids as electrolytes, were applied to the purification of caffeic, ferulic and protocatechuic acids, followed by the use of centrifugal partition chromatography (CPC) to reinforce the fractionation process scale-up. In single-step experiments in ABS, high selectivities (SFA/CA = 12.09; SCA/PA = 6.32; SFA/PA = 1.91) and adequate partition coefficients (KCA = 2.78 ± 0.20; KPA = 0.44 ± 0.04; KFA = 0.23 ± 0.01) were achieved using ABS formed by sodium chloride as electrolyte. This system was further applied in CPC, allowing an efficient separation of the three phenolic acids after the optimization of the equipment operational conditions, while demonstrating the potential of polymer-based ABS to be used in liquid-liquid chromatography. Finally, the recovery of the phenolic acids (≥ 65%) with high purity from the ABS phases was demonstrated, followed by the reuse of the phase-forming components.

10.
Biotechnol Prog ; 34(5): 1205-1212, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30006961

RESUMEN

Given the biotechnology advances observed in recent years in terms of upstream, the development of effective downstream processes becomes mandatory to decrease the associated costs of biotechnological-based products. Although a large interest has been devoted to ionic-liquid-based aqueous biphasic systems (IL-based ABS) as tailored separation platforms, imidazolium-based ILs have been the preferred choice as phase-forming agents. To overcome some toxicity and biodegradability issues associated to imidazolium-based ILs, novel ABS composed of ILs analogues of glycine-betaine (AGB-ILs) are here proposed and investigated. Five AGB-ILs were synthesized, characterized in terms of ecotoxicity, and applied toward the development of novel ABS formed with Na2 SO4 . Three commercial ILs were also investigated for comparison purposes. The respective ABS ternary phase diagrams, as well as the tie-lines and tie-line lengths, were determined at 25°C. Finally, their performance as extraction strategies was evaluated with five amino acids (L-tryptophan, L-phenylalanine, D-phenylalanine, L-tyrosine and L-3,4-dihydroxyphenylalanine/L-dopa). In all studied systems amino acids preferentially migrate to the IL-rich phase, and with AGB-ILs, the amino acid extraction efficiencies to the IL-rich phase range between 65% and 100%, obtained in a single-step. Furthermore, the studied AGB-ILs display a higher ability to form ABS and to extract amino acids than ABS composed of more traditional and commercial ILs. In summary, novel ABS composed of AGB-ILs can be formed and used as separation routes of value-added compounds of biotechnological interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1205-1212, 2018.


Asunto(s)
Betaína/química , Líquidos Iónicos/química , Agua/química , Aminoácidos/química , Biotecnología , Fraccionamiento Químico , Temperatura
11.
Process Biochem ; 51(6): 781-791, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27642253

RESUMEN

The ability of aqueous biphasic systems (ABS) composed of polyethylene glycols of different molecular weights (PEG 400, 600 and 1000) and buffered aqueous solutions of potassium citrate/citric acid (pH = 5.0 - 8.0) to selectively extract ovalbumin from egg white was here investigated. Phase diagrams, tie-lines and tie-line lengths were determined at 25ºC and the partitioning of ovalbumin in these systems was then evaluated. Aiming at optimizing the selective extraction of ovalbumin in the studied ABS, factors such as pH, PEG molecular weight and amount of the phase-forming components were initially investigated with pure commercial ovalbumin. In almost all ABS, it was observed a preferential partitioning of ovalbumin to the polymer-rich phase, with extraction efficiencies higher than 90%. The best ABS were then applied in the purification of ovalbumin from the real egg white matrix. In order to ascertain on the ovalbumin purity and yield, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion high performance liquid chromatography (SE-HPLC) analyses were conducted, confirming that the isolation/purification of ovalbumin from egg white was completely achieved in a single-step with a recovery yield of 65%. The results obtained show that polymer-salt-based ABS allow the selective extraction of ovalbumin from egg white with a simpler approach and better performance than previously reported. Finally, it is shown that ovalbumin can be completely recovered from the PEG-rich phase by an induced precipitation using an inexpensive and sustainable separation platform which can be easily applied on an industrial scale.

12.
Chemistry ; 21(12): 4781-8, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25652351

RESUMEN

Antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative to the most focused mammal antibodies, because they can be obtained in higher titers by less invasive approaches. However, the production cost of high-quality IgY for large-scale applications remains higher than that of other drug therapies due to the lack of efficient purification methods. The search for new purification platforms is thus vital. The solution could be liquid-liquid extraction by using aqueous biphasic systems (ABS). Herein, we report the extraction and attempted purification of IgY from chicken egg yolk by using a new ABS composed of polymers and Good's buffer ionic liquids (GB-ILs). New self-buffering and biocompatible ILs based on the cholinium cation and anions derived from Good's buffers were synthesized and the self-buffering characteristics and toxicity were characterized. Moreover, when these GB-ILs are combined with PPG 400 (poly(propylene) glycol with a molecular weight of 400 g mol(-1)) to form ABS, extraction efficiencies, of the water-soluble fraction of proteins, ranging between 79 and 94% were achieved in a single step. Based on computational investigations, we also demonstrate that the preferential partitioning of IgY for the GB-IL-rich phase is dominated by hydrogen-bonding and van der Waals interactions.


Asunto(s)
Líquidos Iónicos/química , Animales , Sitios de Unión , Pollos , Yema de Huevo/metabolismo , Inmunoglobulinas/aislamiento & purificación , Líquidos Iónicos/metabolismo , Extracción Líquido-Líquido , Simulación del Acoplamiento Molecular , Polietilenglicoles/química , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...