Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 28(4): 2123-2127, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33911928

RESUMEN

The present study describes the biosynthesis of silver nanoparticles, using the fungus Penicillium verrucosum. The silver nanoparticles were synthesised by reacting silver nitrate (AgNO3) with the cell free filtrates of the fungal culture, and were then characterized by UV-visible spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive, and X-ray diffraction analysis to further evaluate their successful biosynthesis, optical and morphological features (size and shape), and crystallinity. The bioactivity of the synthesized nanoparticles against two phytopathogenic fungi i.e: Fusarium chlamydosporum and Aspergillus flavus was evaluated using nanomaterial seeding media. These biogenic silver nanoparticles were polydisperse in nature, with a size of 10-12 nm. With regard to the antifungal activity, 150 ppm of the nanoparticles suppressed the growth of F. chlamydosporum and A. flavus by about 50%. To the best of our knowledge, this is the first report on the use of P. verrucosum to synthesise silver nanoparticles. The present study demonstrates a novel, simple, and eco-friendly process for the generation of biofunctionally useful biogenic nanoparticles.

2.
Saudi J Biol Sci ; 28(4): 2453-2459, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33911958

RESUMEN

Cadmium contamination in croplands is recognized one of the major threat, seriously affecting soil health and sustainable agriculture around the globe. Cd mobility in wastewater irrigated soils can be curtailed through eco-friendly and cost effective organic soil amendments (biochars) that eventually minimizes its translocation from soil to plant. This study explored the possible effects of various types of plants straw biochar as soil amendments on cadmium (Cd) phytoavailability in wastewater degraded soil and its subsequent accumulation in sunflower tissues. The studied biochars including rice straw (RS), wheat straw (WS), acacia (AC) and sugarcane bagasse (SB) to wastewater irrigated soil containing Cd. Sunflower plant was grown as a test plant and Cd accumulation was recorded in its tissues, antioxidant enzymatic activity chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM and Soluble Cd) were also examined. Results revealed that addition of biochar significantly minimized Cd mobility in soil by 53.4%, 44%, 41% and 36% when RS, WS, AC and SB were added at 2% over control. Comparing the control soil, biochar amended soil effectively reduced Cd uptake via plants shoots by 71.7%, 60.6%, 59% and 36.6%, when RS, WS, AC and SB. Among all the biochar, rice husk induced biochar significantly reduced oxidative stress and reduced SOD, POD and CAT activity by 49%, 40.5% and 46.5% respectively over control. In addition, NPK were significantly increased among all the added biochars in soil-plant system as well as improved chlorophyll contents relative to non-bioachar amended soil. Thus, among all the amendments, rice husk and wheat straw biochar performed well and might be considered the suitable approach for sunflower growth in polluted soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...