Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JACS Au ; 4(7): 2695-2711, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39055148

RESUMEN

The paramagnetism of f-block ions has been exploited in chiral shift reagents and magnetic resonance imaging, but these applications tend to focus on 1H NMR shifts as paramagnetic broadening makes less sensitive nuclei more difficult to study. Here we report a solution and solid-state (ss) 29Si NMR study of an isostructural series of locally D 3h -symmetric early f-block metal(III) tris-hypersilanide complexes, [M{Si(SiMe3)3}3(THF)2] (1-M; M = La, Ce, Pr, Nd, U); 1-M were also characterized by single crystal and powder X-ray diffraction, EPR, ATR-IR, and UV-vis-NIR spectroscopies, SQUID magnetometry, and elemental analysis. Only one SiMe3 signal was observed in the 29Si ssNMR spectra of 1-M, while two SiMe3 signals were seen in solution 29Si NMR spectra of 1-La and 1-Ce. This is attributed to dynamic averaging of the SiMe3 groups in 1-M in the solid state due to free rotation of the M-Si bonds and dissociation of THF from 1-M in solution to give the locally C 3v -symmetric complexes [M{Si(SiMe3)3}3(THF) n ] (n = 0 or 1), which show restricted rotation of M-Si bonds on the NMR time scale. Density functional theory and complete active space self-consistent field spin-orbit calculations were performed on 1-M and desolvated solution species to model paramagnetic NMR shifts. We find excellent agreement of experimental 29Si NMR data for diamagnetic 1-La, suggesting n = 1 in solution and reasonable agreement of calculated paramagnetic shifts of SiMe3 groups for 1-M (M = Pr and Nd); the NMR shifts for metal-bound 29Si nuclei could only be reproduced for diamagnetic 1-La, showing the current limitations of pNMR calculations for larger nuclei.

2.
J Am Chem Soc ; 145(25): 13632-13639, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37327086

RESUMEN

Anisotropy in the magnetic susceptibility strongly influences the paramagnetic shifts seen in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) experiments. A previous study on a series of C3-symmetric prototype MRI contrast agents showed that their magnetic anisotropy was highly sensitive to changes in molecular geometry and concluded that changes in the average angle between the lanthanide-oxygen (Ln-O) bonds and the molecular C3 axis due to solvent interactions had a significant impact on the magnetic anisotropy and, consequently, the paramagnetic shift. However, this study, like many others, was predicated on an idealized C3-symmetric structural model, which may not be representative of the dynamic structure in solution at the single-molecule level. Here, we address this by using ab initio molecular dynamics simulations to simulate how the molecular geometry, in particular the angles between the Ln-O bonds and the pseudo-C3 axis, evolves over time in the solution, mimicking typical experimental conditions. We observe large-amplitude oscillations in the O-Ln-C̃3 angles, and complete active space self-consistent field spin-orbit calculations show that this leads to similarly large oscillations in the pseudocontact (dipolar) paramagnetic NMR shifts. The time-averaged shifts show good agreement with experimental measurements, while the large fluctuations suggest that an idealized structure provides an incomplete description of the solution dynamics. Our observations have significant implications for modeling the electronic and nuclear relaxation times in this and other systems where the magnetic susceptibility is exquisitely sensitive to the molecular structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA