Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 234: 119826, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36881954

RESUMEN

In recent years the concern with emerging pollutants in water has become more prominent, especially pharmaceutical residues, such as antibiotics due to the influence to increase antibacterial resistance. Further, conventional wastewater treatment methods have not demonstrated efficiency for the complete degradation of these compounds, or they have limitations to treat a large volume of waste. In this sense, this study aims to investigate the degradation of amoxicillin, one of the most prescribed antibiotics, in wastewater via supercritical water gasification (SCWG) using a continuous flow reactor. For this purpose, the process operating conditions of temperature, feed flow rate, and concentration of H2O2 was evaluated using Experimental Design and Response Surface Methodology techniques and optimized by Differential Evolution methodology. Total organic carbon (TOC) removal, chemical oxygen demand (COD) degradability, reaction time, amoxicillin degradation rate, toxicity of degradation by-products, and gaseous products were evaluated. The use of SCWG for treatment achieved 78.4% of the TOC removal for the industrial wastewater. In the gaseous products, hydrogen was the majority component. Furthermore, high-performance liquid chromatography analyses demonstrated that the antibiotic amoxicillin was degraded. For a mass flow rate of 15 mg/min of amoxicillin fed into the reaction system, 14.4 mg/min was degraded. Toxicity tests with microcrustacean Artemia salina showed slight toxicity to treated wastewater. Despite that, the outcomes reveal the SCWG has great potential to degrade amoxicillin and may be applied to treat several pharmaceutical pollutants. Aside from this, carbon-rich effluents may lead to a significant energy gaseous product, especially, hydrogen and syngas.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Amoxicilina , Antibacterianos , Agua/química , Eliminación de Residuos Líquidos/métodos , Peróxido de Hidrógeno , Gases , Hidrógeno/química , Contaminantes Químicos del Agua/química , Carbono , Preparaciones Farmacéuticas
2.
RSC Adv ; 12(53): 34746-34759, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36545583

RESUMEN

Biodiesel production is one of the promising strategies to reduce diesel consumption and an important contribution to climate change. However, biodiesel stability remains a challenging problem in biofuel use in the global energy matrix. In this context, organic additives have been investigated to minimize these problems and reduce harmful emissions to comply with fuel requirement standards. In this study, we discuss a comprehensive structural description, a behavior of B15 [85% volume of diesel and 15% volume of biodiesel (B100)] stability in the presence of antioxidants (chalcone analogues), and a theoretical calculation to pave the way for clarifying and expanding the potential of title compounds as an antioxidant additive for diesel-biodiesel blends. Finally, a systematic description of the oxidation stability was undertaken using a specialized machine learning computational pySIRC platform.

3.
J Colloid Interface Sci ; 535: 245-254, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312950

RESUMEN

Photocatalytic activity of TiO2 nanoparticles is highly dependent on their phase composition. The coexistence of anatase and rutile phases in a single nanoparticle eases the electron transfer process between the phases, and favors the separation of photogenerated pairs. In this work, highly photoactive mixed-phase TiO2 nanostructures were prepared by supercritical antisolvent precipitation (SAS), an environmentally friendly technology. It is shown here that this methodology has the remarkable ability to produce highly porous (515 m2/g) and crystalline TiO2 nanoparticles. The phase composition of as-prepared TiO2 samples can be tailored through annealing process. Several mixed-phase TiO2 samples were tested to assess the correlation between photocatalytic activity and phase composition. The photocatalytic performance is strongly affected by the anatase-rutile ratio, since the synergism between phases enhances the charge separation, reducing the recombination effect of the photogenerated pairs (e-/h+). It was found that the nanocatalyst composed by 7.0 wt% of rutile phase and 93.0 wt% of anatase phase, named as TiO2_650, presented the highest photodegradation for both methyl orange (MO) and methylene blue (MB) dyes. Interestingly, TiO2 samples prepared by SAS have superior photoactivity than the benchmark photocatalyst names as P25, which is a widely used TiO2 material composed of anatase and rutile phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...