Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061837

RESUMEN

Metabolic syndrome (MetS) is a multifactorial condition that significantly increases the risk of cardiovascular disease and chronic kidney disease (CKD). Recent studies have emphasized the role of lipid dysregulation in activating cellular mechanisms that contribute to CKD progression in the context of MetS. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have demonstrated efficacy in improving various components of MetS, including obesity, dyslipidemia, and insulin resistance. While SGLT2i have shown cardioprotective benefits, the underlying cellular mechanisms in MetS and CKD remain poorly studied. Therefore, this review aims to elucidate the cellular mechanisms by which SGLT2i modulate lipid metabolism and their impact on insulin resistance, mitochondrial dysfunction, oxidative stress, and CKD progression. We also explore the potential benefits of combining SGLT2i with other antidiabetic drugs. By examining the beneficial effects, molecular targets, and cytoprotective mechanisms of both natural and synthetic SGLT2i, this review provides a comprehensive understanding of their therapeutic potential in managing MetS-induced CKD. The information presented here highlights the significance of SGLT2i in addressing the complex interplay between metabolic dysregulation, lipid metabolism dysfunction, and renal impairment, offering clinicians and researchers a valuable resource for developing improved treatment strategies and personalized approaches for patients with MetS and CKD.

2.
Biomol Biomed ; 24(6): 1441-1451, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-38907737

RESUMEN

Diabetes mellitus (DM) is a chronic disease characterized by persistent hyperglycemia, which is a major contributing factor to chronic kidney disease (CKD), end-stage renal disease (ESRD), and cardiovascular-related deaths. There are several mechanisms leading to kidney injury, with hyperglycemia well known to stimulate oxidative stress, inflammation, tissue remodeling, and dysfunction in the vascular system and organs. Increased reactive oxygen species (ROS) decrease the bioavailability of vasodilators while increasing vasoconstrictors, resulting in an imbalance in vascular tone and the development of hypertension. Treatments for diabetes focus on controlling blood glucose levels, but due to the complexity of the disease, multiple drugs are often required to successfully delay the development of microvascular complications, including CKD. In this context, naringenin, a flavonoid found in citrus fruits, has demonstrated anti-inflammatory, anti-fibrotic, and antioxidant effects, suggesting its potential to protect the kidney from deleterious effects of diabetes. This review aims to summarize the scientific evidence of the effects of naringenin as a potential therapeutic option for diabetes-induced CKD.


Asunto(s)
Nefropatías Diabéticas , Flavanonas , Flavanonas/uso terapéutico , Flavanonas/farmacología , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Animales , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Sustancias Protectoras/uso terapéutico , Sustancias Protectoras/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico
3.
J Clin Med ; 13(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38541826

RESUMEN

Background: Rejection continues to be the main cause of renal graft loss. Currently, the gold standard for diagnosis is an allograft biopsy; however, because it is time-consuming, costly, and invasive, the pursuit of novel biomarkers has gained interest. Variation in the expressions of miRNAs is currently considered a probable biomarker for the diagnosis of acute rejection. This study aimed to determine whether miR-150-5p in serum is related to microvascular damage in patients with acute antibody-mediated rejection (ABMR). Methods: A total of 27 patients who underwent renal transplantation (RT) with and without ABMR were included in the study. We performed the quantification of hsa-miR-150-5p, hsa-miR-155, hsa-miR-21, hsa-miR-126, and hsa-miR-1 in plasma by RT-qPCR. The expressions between the groups and their correlations with the histological characteristics of the patients with ABMR were also investigated. Results: miR-150-5p significantly increased in the plasma of patients with rejection (p < 0.05), and the changes in miR-150-5p were directly correlated with microvascular inflammation in the allograft biopsies. Clinical utility was determined by ROC analysis with an area under the curve of 0.873. Conclusions: Our results show that the patients with RT with ABMR exhibited increased expression of miR-150-5p compared to patients without rejection, which could have clinical consequences, as well as probable utility in the diagnosis of ABMR, and bioinformatics may help in unraveling the molecular mechanisms underlying ABMR conditions.

4.
PeerJ ; 11: e16132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37786577

RESUMEN

Background: Recent studies have suggested that metabolic syndrome (MS) encompasses a group of risk factors for developing chronic kidney disease (CKD). This work aimed to evaluate the antioxidant and anti-inflammatory effects of allicin in the kidney from an experimental model of MS. Methods: Male Wistar rats (220-250 g) were used, and three experimental groups (n = 6) were formed: control (C), metabolic syndrome (MS), and MS treated with allicin (16 mg/Kg/day, gastric gavage) (MS+A). MS was considered when an increase of 20% in at least three parameters (body weight, systolic blood pressure (SBP), fasting blood glucose (FBG), or dyslipidemia) was observed compared to the C group. After the MS diagnosis, allicin was administered for 30 days. Results: Before the treatment with allicin, the MS group showed more significant body weight gain, increased SBP, and FBG, glucose intolerance, and dyslipidemia. In addition, increased markers of kidney damage in urine and blood. Moreover, the MS increased oxidative stress and inflammation in the kidney compared to group C. The allicin treatment prevented further weight gain, reduced SBP, FBG, glucose intolerance, and dyslipidemia. Also, markers of kidney damage in urine and blood were decreased. Further, the oxidative stress and inflammation were decreased in the renal cortex of the MS+A compared to the MS group. Conclusion: Allicin exerts its beneficial effects on the metabolic syndrome by considerably reducing systemic and renal inflammation as well as the oxidative stress. These effects were mediated through the Nrf2 pathway. The results suggest allicin may be a therapeutic alternative for treating kidney injury induced by the metabolic syndrome risk factors.


Asunto(s)
Intolerancia a la Glucosa , Síndrome Metabólico , Insuficiencia Renal Crónica , Ratas , Animales , Masculino , Antioxidantes/farmacología , Síndrome Metabólico/tratamiento farmacológico , Intolerancia a la Glucosa/tratamiento farmacológico , Ratas Wistar , Riñón , Insuficiencia Renal Crónica/tratamiento farmacológico , Peso Corporal , Modelos Teóricos , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología
5.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37237888

RESUMEN

There is increasing evidence that either ingested or produced fructose may have a role in metabolic syndrome. While not commonly considered a criterion for metabolic syndrome, cardiac hypertrophy is often associated with metabolic syndrome, and its presence carries increased cardiovascular risk. Recently it has been shown that fructose and fructokinase C (KHK) can be induced in cardiac tissue. Here we tested whether diet-induced metabolic syndrome causes heart disease associated with increased fructose content and metabolism and whether it can be prevented with a fructokinase inhibitor (osthole). Male Wistar rats were provided a control diet (C) or high fat/sugar diet for 30 days (MS), with half of the latter group receiving osthol (MS+OT, 40 mg/kg/d). The Western diet increased fructose, uric acid, and triglyceride concentrations in cardiac tissue associated with cardiac hypertrophy, local hypoxia, oxidative stress, and increased activity and expression of KHK in cardiac tissue. Osthole reversed these effects. We conclude that the cardiac changes in metabolic syndrome involve increased fructose content and its metabolism and that blocking fructokinase can provide cardiac benefit through the inhibition of KHK with modulation of hypoxia, oxidative stress, hypertrophy, and fibrosis.

6.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555240

RESUMEN

Asthma is a chronic inflammatory disease in the airways with a multifactorial origin but with inflammation and oxidative stress as related pathogenic mechanisms. Garlic (Allium sativum) is a nutraceutical with different biological properties due to sulfur-containing natural compounds. Studies have shown that several compounds in garlic may have beneficial effects on cardiovascular diseases, including those related to the lungs. Therefore, it is possible to take advantage of the compounds from garlic as nutraceuticals for treating lung diseases. The objective of this article is to review the biological properties of the sulfur compounds present in garlic for the treatment of asthma, as well as the cellular mechanisms involved. Here, we discuss the potential therapeutic effects of garlic compounds in the modulation of inflammation and oxidative stress, as well as its antibiotic and antiviral activities for identifying and testing potential treatment options for asthma management.


Asunto(s)
Asma , Ajo , Humanos , Compuestos de Azufre/farmacología , Antioxidantes/farmacología , Asma/tratamiento farmacológico , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología
7.
Ann Hum Biol ; 49(7-8): 291-298, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36350847

RESUMEN

BACKGROUND: Plasminogen activator inhibitor 1 (PAI-1) and resistin are associated with dysfunctional adipose tissue (AT)-related metabolic complications. The role of dietary eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids in this relationship is unknown. AIM: To investigate the association of EPA and DHA with PAI-1 and resistin, as well as the role of this association on the glucose metabolism of apparently healthy subjects. SUBJECTS AND METHODS: Thirty-six healthy individuals were included. Validated food frequency questionnaires were used to analyse dietary habits. Inflammatory and glucose metabolism markers were quantified. Subcutaneous AT samples were obtained, and adipocyte number, area, and macrophage content were assessed. RESULTS: In 36 subjects aged 56 ± 8 years and with a body mass index of 26 ± 4 kg/m2, logEPA, and logDHA showed significant association with logresistin and a marginal association with PAI-1. Adipocyte number, area, and lognumber of macrophages per adipocyte significantly correlated with PAI-1 but not with logresistin. Although logEPA and logDHA were independently associated with loginsulin, loginsulin resistance, and C-Peptide, the addition of logresistin, but not of PAI-1, into the multivariable model, abolished the associations. CONCLUSIONS: EPA and DHA could modulate glucose metabolism across AT functional states. Our data indicate that this association is independent of other metabolic risk factors.


Asunto(s)
Ácidos Grasos Omega-3 , Inhibidor 1 de Activador Plasminogénico , Humanos , Inhibidor 1 de Activador Plasminogénico/metabolismo , Resistina/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacología , Autoinforme , Voluntarios Sanos , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Tejido Adiposo/metabolismo , Glucosa/metabolismo
8.
Arch. cardiol. Méx ; Arch. cardiol. Méx;92(3): 362-370, jul.-sep. 2022. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1393832

RESUMEN

Resumen Las enfermedades cardiovasculares (ECV) comprenden un grupo de enfermedades cuyo denominador común es la afectación de vasos sanguíneos, corazón y ritmo cardiaco. El tratamiento de las ECV representa costos muy altos para los sistemas de salud y está enfocado en el control de los factores de riesgo. A pesar de existir una gran variedad de fármacos para el tratamiento de las ECV, estas continúan siendo las principales causas de mortalidad, posiblemente debido a que su origen es multifactorial y por ello se requiere de más de un fármaco. En este contexto, la alicina, un compuesto derivado del ajo, ha mostrado regular la expresión de vías de señalización y factores de riesgo asociados a la progresión de las ECV. Por ello el objetivo del presente trabajo es revisar los mecanismos celulares y moleculares por medio de los cuales la alicina ejerce sus efectos terapéuticos y describir las evidencias científicas del porqué la alicina podría representar un potencial candidato para coadyuvar en el tratamiento de las ECV.


Abstract Cardiovascular diseases (CVD) include a group of diseases whose common denominator is the affection of the blood vessels, heart, and heart rate. The treatment of CVD represents high costs to the health systems and is focused on the control of risk factors. Despite the existence of a great variety of treatments of the CVD, these continue as the main cause of mortality mainly due to the multifactorial origin, and therefore more than one drug is required. In this context, allicin, a compound derived from garlic, has shown regulate the expression of signaling pathways and risk factors associated with the progression of CVD. Therefore, the objective of this work is to review the cellular and molecular mechanisms through which allicin exert its therapeutic effects and to describe the scientific evidences why allicin represents a potential candidate to assist in the treatment of CVD.

9.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012349

RESUMEN

Cardiovascular diseases (CVDs) are a group of diseases in which the common denominator is the affection of blood vessels, heart tissue, and heart rhythm. The genesis of CVD is complex and multifactorial; therefore, approaches are often based on multidisciplinary management and more than one drug is used to achieve the optimal control of risk factors (dyslipidemia, hypertension, hypertrophy, oxidative stress, endothelial dysfunction, inflammation). In this context, allicin, a sulfur compound naturally derived from garlic, has shown beneficial effects on several cardiovascular risk factors through the modulation of cellular mechanisms and signaling pathways. Effective pharmacological treatments for CVD or its risk factors have not been developed or are unknown in clinical practice. Thus, this work aimed to review the cellular mechanisms through which allicin exerts its therapeutic effects and to show why it could be a therapeutic option for the prevention or treatment of CVD and its risk factors.


Asunto(s)
Enfermedades Cardiovasculares , Ajo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Disulfuros/uso terapéutico , Humanos , Ácidos Sulfínicos/farmacología , Ácidos Sulfínicos/uso terapéutico
10.
Arch Cardiol Mex ; 92(3): 362-370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35772125

RESUMEN

Las enfermedades cardiovasculares (ECV) comprenden un grupo de enfermedades cuyo denominador común es la afectación de vasos sanguíneos, corazón y ritmo cardiaco. El tratamiento de las ECV representa costos muy altos para los sistemas de salud y está enfocado en el control de los factores de riesgo. A pesar de existir una gran variedad de fármacos para el tratamiento de las ECV, estas continúan siendo las principales causas de mortalidad, posiblemente debido a que su origen es multifactorial y por ello se requiere de más de un fármaco. En este contexto, la alicina, un compuesto derivado del ajo, ha mostrado regular la expresión de vías de señalización y factores de riesgo asociados a la progresión de las ECV. Por ello el objetivo del presente trabajo es revisar los mecanismos celulares y moleculares por medio de los cuales la alicina ejerce sus efectos terapéuticos y describir las evidencias científicas del porqué la alicina podría representar un potencial candidato para coadyuvar en el tratamiento de las ECV.Cardiovascular diseases (CVD) include a group of diseases whose common denominator is the affection of the blood vessels, heart, and heart rate. The treatment of CVD represents high costs to the health systems and is focused on the control of risk factors. Despite the existence of a great variety of treatments of the CVD, these continue as the main cause of mortality mainly due to the multifactorial origin, and therefore more than one drug is required. In this context, allicin, a compound derived from garlic, has shown regulate the expression of signaling pathways and risk factors associated with the progression of CVD. Therefore, the objective of this work is to review the cellular and molecular mechanisms through which allicin exert its therapeutic effects and to describe the scientific evidences why allicin represents a potential candidate to assist in the treatment of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Cardiovasculares/epidemiología , Humanos , Estudios Retrospectivos , Factores de Riesgo
11.
Clin Chim Acta ; 531: 368-374, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35533716

RESUMEN

BACKGROUND: Studies have focused on the search of novel biomarkers that allow to easily identify dysfunctional adipose tissue (AT). Uric acid (UA) could be produced and reabsorbed by AT. It has been suggested that the increases of UA concentrations participates in AT dysfunction. We investigated the association of UA with morpho-functional adipose tissue markers in apparently healthy subjects. METHODS: Forty apparently healthy individuals were included. Dietary habits and anthropometrical features were evaluated. Circulating concentrations of UA, adiponectin, leptin, and plasminogen activator inhibitor-1 (PAI-1) were quantified. Periumbilical subcutaneous AT samples were obtained and adipocyte number, adipocyte area, and macrophages content were assessed. RESULTS: The present study included 40 healthy subjects (67% women) with an average age of 57 ± 9 y, BMI of 26 ± 4 (kg/m2). UA showed a significant association with the number and mean area of adipocytes, macrophages number, adiponectin, and PAI-1. Although UA was independently associated with the number and mean area of adipocytes, macrophages number, adiponectin into the adjusted multivariable model. CONCLUSION: UA concentrations are associated with morpho-functional adipose tissue markers. Our results underscore the importance of UA as one earlier instigator of adipose tissue dysfunction in subjects without metabolic abnormalities.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico , Ácido Úrico , Adipoquinas/metabolismo , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Anciano , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Inhibidor 1 de Activador Plasminogénico/metabolismo , Ácido Úrico/metabolismo
12.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35204238

RESUMEN

Chronic kidney disease (CKD) is a world health problem increasing dramatically. The onset of CKD is driven by several mechanisms; among them, metabolic reprogramming and changes in redox signaling play critical roles in the advancement of inflammation and the subsequent fibrosis, common pathologies observed in all forms of CKD. Extracellular vesicles (EVs) are cell-derived membrane packages strongly associated with cell-cell communication since they transfer several biomolecules that serve as mediators in redox signaling and metabolic reprogramming in the recipient cells. Recent studies suggest that EVs, especially exosomes, the smallest subtype of EVs, play a fundamental role in spreading renal injury in CKD. Therefore, this review summarizes the current information about EVs and their cargos' participation in metabolic reprogramming and mitochondrial impairment in CKD and their role in redox signaling changes. Finally, we analyze the effects of these EV-induced changes in the amplification of inflammatory and fibrotic processes in the progression of CKD. Furthermore, the data suggest that the identification of the signaling pathways involved in the release of EVs and their cargo under pathological renal conditions can allow the identification of new possible targets of injury spread, with the goal of preventing CKD progression.

13.
Life Sci ; 289: 120227, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34921866

RESUMEN

BACKGROUND: Ischemic kidney injury is a common clinical condition resulting from transient interruption of the kidney's normal blood flow, leading to oxidative stress, inflammation, and kidney dysfunction. The ketogenic diet (KD), a low-carbohydrate, high-fat diet that stimulates endogenous ketone body production, has potent antioxidant and anti-inflammatory effects in distinct tissues and might thus protect the kidney against ischemia and reperfusion (IR) injury. MAIN METHODS: Male Wistar rats were fed a KD or a control diet (CD) for three days before analyzing metabolic parameters or testing nephroprotection. We used two different models of kidney IR injury and conducted biochemical, histological, and Western blot analyses at 24 h and two weeks after surgery. KEY FINDINGS: Acute KD feeding caused protein acetylation, liver AMPK activation, and increased resistance to IR-induced kidney injury. At 24 h after IR, rats on KD presented reduced tubular damage and improved kidney functioning compared to rats fed with a CD. KD attenuated oxidative damage (protein nitration, 4-HNE adducts, and 8-OHdG), increased antioxidant defenses (GPx and SOD activity), and reduced inflammatory intermediates (IL6, TNFα, MCP1), p50 NF-κB expression, and cellular infiltration. Also, KD prevented interstitial fibrosis development at two weeks, up-regulation of HSP70, and chronic Klotho deficiency. SIGNIFICANCE: Our findings demonstrate for the first time that short-term KD increases tolerance to experimental kidney ischemia, opening the opportunity for future therapeutic exploration of a dietary preconditioning strategy to convey kidney protection in the clinic.


Asunto(s)
Dieta Cetogénica , Regulación de la Expresión Génica , Estrés Oxidativo , Insuficiencia Renal Crónica , Animales , Biomarcadores/metabolismo , Inflamación/dietoterapia , Inflamación/metabolismo , Inflamación/patología , Isquemia/dietoterapia , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/dietoterapia , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología
14.
Life Sci ; 287: 120091, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34717910

RESUMEN

BACKGROUND: Cold temperatures can aggravate pulmonary diseases and promote pulmonary arterial hypertension (PAH); however, the underlying mechanism has not been fully explored. AIM: To explore the effect of chronic cold exposure on the production of inflammatory cytokines and microRNAs (miRNAs) in a monocrotaline (MCT)-induced PAH model. METHODS: Male Sprague Dawley rats were divided into a Control (23.5 ± 2 °C), Cold (5.0 ± 1 °C for ten days), MCT (60 mg/kg body weight i.p.), and MCT + Cold (ten days of cold exposure after 3 weeks of MCT injection). Hemodynamic parameters, right ventricle (RV) hypertrophy, and pulmonary arterial medial wall thickness were determined. IL-1ß, IL-6, and TNF-α levels were determined using western blotting. miR-21-5p and -3p, miR-146a-5p and -3p, and miR-155-5p and -3p and plasma extracellular vesicles (EVs) and mRNA expression of Cd68, Cd163, Bmpr2, Smad5, Tgfbr2, and Smad3 were determined using RT-qPCR. RESULTS: The MCT + Cold group had aggravated RV hypertrophy hemodynamic parameters, and pulmonary arterial medial wall thickness. In lungs of the MCT + Cold, group the protein levels of TNF-α, IL-1ß, and IL-6 were higher than those in the MCT group. The mRNA expression of Cd68 and Cd163 were higher in the MCT + Cold group. miR-146a-5p and miR-155-5p levels were higher in the plasma EVs and lungs of the MCT + Cold group. Cold exposure promoted a greater decrease in miR-21-5p, Bmpr2, Smad5, Tgfbr2, and Smad3 mRNA expression in lungs of the MCT + Cold group. CONCLUSION: Cold exposure aggravates MCT-induced PAH with an increase in inflammatory marker and miRNA levels in the plasma EVs and lungs.


Asunto(s)
Frío/efectos adversos , Citocinas/biosíntesis , MicroARNs/biosíntesis , Hipertensión Arterial Pulmonar/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Pulmón/metabolismo , Pulmón/patología , Masculino , Hipertensión Arterial Pulmonar/patología , Ratas , Ratas Sprague-Dawley
15.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445305

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling. Recent evidence supports that inflammation plays a key role in triggering and maintaining pulmonary vascular remodeling. Recent studies have shown that garlic extract has protective effects in PAH, but the precise role of allicin, a compound derived from garlic, is unknown. Thus, we used allicin to evaluate its effects on inflammation and fibrosis in PAH. Male Wistar rats were divided into three groups: control (CON), monocrotaline (60 mg/kg) (MCT), and MCT plus allicin (16 mg/kg/oral gavage) (MCT + A). Right ventricle (RV) hypertrophy and pulmonary arterial medial wall thickness were determined. IL-1ß, IL-6, TNF-α, NFκB p65, Iκß, TGF-ß, and α-SMA were determined by Western blot analysis. In addition, TNF-α and TGF-ß were determined by immunohistochemistry, and miR-21-5p and mRNA expressions of Cd68, Bmpr2, and Smad5 were determined by RT-qPCR. Results: Allicin prevented increases in vessel wall thickness due to TNF-α, IL-6, IL-1ß, and Cd68 in the lung. In addition, TGF-ß, α-SMA, and fibrosis were lower in the MCT + A group compared with the MCT group. In the RV, allicin prevented increases in TNF-α, IL-6, and TGF-ß. These observations suggest that, through the modulation of proinflammatory and profibrotic markers in the lung and heart, allicin delays the progression of PAH.


Asunto(s)
Antiinflamatorios/uso terapéutico , Disulfuros/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Ácidos Sulfínicos/uso terapéutico , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fibrosis , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Ratas Wistar , Proteína Smad5/genética , Proteína Smad5/metabolismo
16.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670975

RESUMEN

Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.


Asunto(s)
Cumarinas/farmacología , Dieta Occidental/efectos adversos , Fructoquinasas/antagonistas & inhibidores , Enfermedades Renales/prevención & control , Síndrome Metabólico/prevención & control , Animales , Cumarinas/uso terapéutico , Dieta de Carga de Carbohidratos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Fructoquinasas/metabolismo , Fructosa/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar
17.
Oxid Med Cell Longev ; 2020: 8850266, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33354281

RESUMEN

Currently, there is the paradox of low water intake but increased intake of sugar-sweetened beverages (SB) in several populations; those habits are associated with an increased prevalence of metabolic derangements and greater chronic disease mortality. Persistent heat dehydration and increased SB intake stimulate the continued release of vasopressin and overactivation of the polyol-fructokinase pathway, synergizing each other, an effect partially mediated by oxidative stress. The objective of the present study was to evaluate whether water restriction concurrent with SB hydration can cause renal damage by stimulating similar pathways as heat dehydration. Three groups of male Wistar rats (n = 6) were fluid restricted; from 10 am to 12 pm animals could rehydrate with tap water (W), or sweetened beverages, one prepared with 11% of a fructose-glucose combination (SB), or with the noncaloric edulcorant stevia (ST). A normal control group of healthy rats was also studied. The animals were followed for 4 weeks. Markers of dehydration and renal damage were evaluated at the end of the study. Fluid restriction and water hydration mildly increased urine osmolality and induced a 15% fall in CrCl while increased the markers of tubular damage by NAG and KIM-1. Such changes were in association with a mild overexpression of V1a and V2 renal receptors, polyol fructokinase pathway overactivation, and increased renal oxidative stress with reduced expression of antioxidant enzymes. Hydration with SB significantly amplified those alterations, while in stevia hydrated rats, the changes were similar to the ones observed in water hydrated rats. These data suggest that current habits of hydration could be a risk factor in developing kidney damage.


Asunto(s)
Enfermedades Renales , Riñón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Bebidas Azucaradas/efectos adversos , Animales , Deshidratación/metabolismo , Deshidratación/patología , Fructoquinasas/metabolismo , Fructosa/efectos adversos , Fructosa/farmacología , Glucosa/efectos adversos , Glucosa/farmacología , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratas , Ratas Wistar , Receptores de Vasopresinas/metabolismo
18.
Antioxidants (Basel) ; 9(11)2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203103

RESUMEN

This study aimed to assess the impact of allicin on the course of diabetic nephropathy. Study groups included control, diabetes, and diabetes-treated rats. Allicin treatment (16 mg/kg day/p.o.) started after 1 month of diabetes onset and was administered for 30 days. In the diabetes group, the systolic blood pressure (SBP) increased, also, the oxidative stress and hypoxia in the kidney cortex were evidenced by alterations in the total antioxidant capacity as well as the expression of nuclear factor (erythroid-derived 2)-like 2/Kelch ECH associating protein 1 (Nrf2/Keap1), hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), erythropoietin (Epo) and its receptor (Epo-R). Moreover, diabetes increased nephrin, and kidney injury molecule-1 (KIM-1) expression that correlated with mesangial matrix, the fibrosis index and with the expression of connective tissue growth factor (CTGF), transforming growth factor-ß1 (TGF-ß1), and α-smooth muscle actin (α-SMA). The insulin levels and glucose transporter protein type-4 (GLUT4) expression were decreased; otherwise, insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) expression was increased. Allicin increased Nrf2 expression and decreased SBP, Keap1, HIF-1α, and VEGF expression. Concurrently, nephrin, KIM-1, the mesangial matrix, fibrosis index, and the fibrotic proteins were decreased. Additionally, allicin decreased hyperglycemia, improved insulin levels, and prevented changes in (GLUT4) and IRSs expression induced by diabetes. In conclusion, our results demonstrate that allicin has the potential to help in the treatment of diabetic nephropathy. The cellular mechanisms underlying its effects mainly rely on the regulation of antioxidant, antifibrotic, and antidiabetic mechanisms, which can contribute towards delay in the progression of renal disease.

19.
Biomed Res Int ; 2020: 4281802, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33204696

RESUMEN

We aimed to investigate the effects of chronic fluid restriction and hydration with a sweetened beverage (SB) in rats from weaning until adolescence, in a posterior acute kidney injury (AKI) event induced by ischemia-reperfusion (I/R). We followed 5 groups of weaning rats: control group (C); two groups with 22 h/day fluid restriction, a group hydrated for two hours with water (-W) and a group hydrated with SB; one group receiving SB ad libitum all day (+SB); and one group in which water consumption was increased using a gel diet. The rats that reached adolescence were submitted to I/R. Fluid restriction and/or SB hydration induced mild renal alterations that were significantly accentuated in the -SB group and resulted in worse outcomes after I/R-induced AKI that resulted in a catastrophic fall in creatinine clearance and diffuse acute tubular necrosis. In summary, low tap water intakes, as well as SB intake in infancy, prompt kidney worse outcomes in a later event of AKI during adolescence and both insults magnify kidney damage. Studies on hydration habits in children are recommended to disclose the potentially harmful effects that those behavioral patterns might carry to future renal health.


Asunto(s)
Lesión Renal Aguda/etiología , Ingestión de Líquidos , Fructosa/farmacología , Animales , Bebidas Endulzadas Artificialmente , Fructoquinasas/metabolismo , Fructosa/efectos adversos , Riñón/metabolismo , Riñón/patología , Pruebas de Función Renal , Peroxidación de Lípido , Lipocalina 2/metabolismo , Masculino , Estado de Hidratación del Organismo , Ratas Wistar , Receptor de Angiotensina Tipo 1/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/etiología
20.
Ther Adv Endocrinol Metab ; 11: 2042018820943374, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32782778

RESUMEN

BACKGROUND AND AIMS: To the best of our knowledge, no studies have investigated the metabolic control of patients with premature coronary artery disease (CAD). The present study analyzes the metabolic control, defined as the simultaneous target in blood pressure, low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol and hemoglobin A1c, as well as the factors associated with its achievement in patients with premature CAD. METHODS: The study included 1206 patients with CAD diagnosed before the age of 55 and 65 years in men and women, respectively. Sociodemographic, clinical and biochemical data were collected to know the prevalence of cardiovascular risk factors, including individual components of metabolic control plus smoking cessation and body mass index (BMI) <25 kg/m2. Non-strict and strict targets were used to evaluate metabolic control. RESULTS: Participants were 54 ± 8 years old, 19.7% were women and had a median CAD evolution of 2.4 years. Non-strict and strict metabolic control was achieved by 18.4% and 6.2% of patients, respectively. Moreover, 79.8% and 67.6% met a composite of three or more cardiovascular risk factor goals using both criteria. BMI <25 kg/m2 was independently associated with 1.734 (95% confidence interval: 1.207-2.492) and 2.541 (95% confidence interval: 1.608-4.014) higher probabilities to meet non-strict or strict metabolic control. CONCLUSION: Our results show that 18.4% and 6.2% of subjects with premature CAD achieved non-strict and strict metabolic control, respectively. BMI <25 kg/m2 was found to be associated with the achievement of metabolic control. Multidisciplinary strategies including healthy lifestyle changes and pharmacological therapies could decrease the socioeconomic and clinical impact of premature CAD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA