Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 13(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831928

RESUMEN

The rabbit skin irritation test has been the standard for evaluating the irritation potential of chemicals; however, alternative methods that do not use animal testing are actively encouraged. Reconstructed human epidermis (RhE) models mimic the biochemical and physiological properties of the human epidermis and can be used as an alternative method. On RhE methods, the metabolic activity of RhE models is used to predict skin irritation, with a reduction in metabolic activity indicating a reduced number of viable cells and linking cell death to skin irritation processes. However, new challenges have emerged as the use of RhE models increases, including the need for non-invasive and marker-free methodologies to assess cellular states. Electrochemical impedance spectroscopy (EIS) is one such methodology that can meet these requirements. In this study, our results showed that EIS can differentiate between irritant and non-irritant chemicals, with a significant increase in the capacitance values observed in the irritant samples. A ROC curve analysis showed that the prediction method based on EIS met OECD TG 439 requirements at all time points and had 95% within-laboratory reproducibility. Comparison with the MTT viability assay showed that prediction using EIS achieved higher sensitivity, specificity, and accuracy. These results suggest that EIS could potentially replace animal testing in the evaluation of irritation potential and could be a valuable addition to in vitro testing strategies.


Asunto(s)
Espectroscopía Dieléctrica , Pruebas de Irritación de la Piel , Animales , Humanos , Conejos , Reproducibilidad de los Resultados , Pruebas de Irritación de la Piel/métodos , Alternativas a las Pruebas en Animales , Epidermis
2.
FEBS J ; 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36440547

RESUMEN

Inflammation is an essential immune response critical for responding to infection, injury and maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue repair by a timed and coordinated infiltration of diverse cell types and the secretion of growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as mammalian development, this type of physiological inflammation is highly associated with immunosuppression. For instance, regenerative inflammation is the consequence of an in situ macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes allowing the transition and dictating the initiation of the regenerative phase. Differences between a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy (DMD), highlight the importance of a coordinated response orchestrated by immune cells. During regenerative inflammation, these cells interact with others and alter the niche, affecting the character of inflammation itself and, therefore, the progression of tissue repair. Comparing acute muscle injury and chronic inflammation in DMD, we review how the same cells and molecules in different numbers, concentration and timing contribute to very different outcomes. Thus, it is important to understand and identify the distinct functions and secreted molecules of macrophages, and potentially other immune cells, during tissue repair, and the contributors to the macrophage switch leveraging this knowledge in treating diseases.

3.
Pharmaceutics ; 14(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365142

RESUMEN

This study proposes a method to prepare autologous bio-based fibrin glue (FG) for use in ophthalmic surgery. FGs containing three fibrinogen concentrations and a thrombin concentrate were prepared using human blood from five donors (FG1: physiological fibrinogen concentration; FG2 and FG3: concentrated fibrinogen). The adhesion strength was tested, and the clinical safety and efficacy were studied in rabbit eyes in conjunctival surgery. A commercial FG was used as a control. From each donor, 2 mL of FG was prepared, containing 1 mL of 3.49 ± 0.78 (FG1), 17.74 ± 4.66 (FG2), or 47.46 ± 9.36 mg/mL (FG3) of fibrinogen and 1 mL of 2248.12 ± 604.20 UI/mL of thrombin. The average adhesion strength increased with the fibrinogen concentration, from 1.49 ± 0.39 kPa (FG1) to 3.14 ± 1.09 kPa (FG3). FG1 showed poor results when used for autograft adhesion. In contrast, the conjunctival autografts were successfully grafted using FG2 and FG3, revealing equivalent adhesion properties compared with commercial FG, but with less inflammation. In conclusion, FGs could be prepared on demand within minutes from small volumes of human blood, using a method that results in FGs which exhibit good adhesion capacity and are also safe and effective in a preclinical study.

4.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563225

RESUMEN

The skin is the largest organ in the human body, comprising the main barrier against the environment. When the skin loses its integrity, it is critical to replace it to prevent water loss and the proliferation of opportunistic infections. For more than 40 years, tissue-engineered skin grafts have been based on the in vitro culture of keratinocytes over different scaffolds, requiring between 3 to 4 weeks of tissue culture before being used clinically. In this study, we describe the development of a polymerizable skin hydrogel consisting of keratinocytes and fibroblast entrapped within a fibrin scaffold. We histologically characterized the construct and evaluated its use on an in vivo wound healing model of skin damage. Our results indicate that the proposed methodology can be used to effectively regenerate skin wounds, avoiding the secondary in vitro culture steps and thus, shortening the time needed until transplantation in comparison with other bilayer skin models. This is achievable due to the instant polymerization of the keratinocytes and fibroblast combination that allows a direct application on the wound. We suggest that the polymerizable skin hydrogel is an inexpensive, easy and rapid treatment that could be transferred into clinical practice in order to improve the treatment of skin wounds.


Asunto(s)
Hidrogeles , Piel Artificial , Fibroblastos , Humanos , Hidrogeles/farmacología , Piel/patología , Trasplante de Piel , Ingeniería de Tejidos/métodos , Cicatrización de Heridas
5.
Toxicol In Vitro ; 82: 105390, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35595034

RESUMEN

To replace the Draize eye irritation test (OECD Test Guideline 404), several test methods based on reconstructed cornea-like epithelium (RhCE) have been developed and adopted in the OECD TG 492. The objective of this study was to stablish the experimental procedures and evaluate the performance assessment of QobuR-RhCE, an in-house RhCE model to be used for the evaluation of eye hazard. We define the essential structural, functional and procedural elements of the test method components to help assuring that the proposed test method is based on the same concepts as the validated reference methods. Performance assessment was evaluated in accordance with the revised performance standards for the assessment of proposed similar or modified in vitro reconstructed human cornea-like epithelium and the minimum list of reference chemicals was evaluated. As result, the proposed method scored 93.3% sensibility, 60% specificity, 76.7% accuracy and 96.7% within-laboratory reproducibility (WLR), providing a similar performance in comparison to the validated reference methods. Additionally, we describe a secondary endpoint based on Transepithelial Electrical Resistance (TEER) that could be of use to better discriminate between irritants and non-irritants. Taken together the results indicate that the QobuR-RhCE test method is an accurate screening tool that can be used as a standalone alternative to evaluate ocular irritation.


Asunto(s)
Alternativas a las Pruebas en Animales , Epitelio Corneal , Alternativas a las Pruebas en Animales/métodos , Animales , Córnea , Humanos , Irritantes/toxicidad , Reproducibilidad de los Resultados , Sistema del Grupo Sanguíneo Rh-Hr/farmacología
6.
Bioelectrochemistry ; 146: 108129, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35397437

RESUMEN

Reconstructed human cornea-like epithelium (RhCE) holds unprecedented promise for toxicological analyses and the replacement of animal use. However, current standards to evaluate potential ocular irritancy present a major downfall, the need to invasively alter tissue samples to evaluate cell viability. In this study, the applicability of impedance analysis was validated by monitoring the change in cell capacitance during tissue maturation and before and after chemical application using coupled electrodes. Our results indicate that cell maturation on RhCE models can be evaluated during model production using capacitance sensing offering a faster and simpler quality control criteria for RhCE model usability. Additionally, cell capacitance resulted to be more sensitive in detecting slight cell damages than methods based on cell metabolism, and when integrated into OECD-approved testing strategies, capacitance sensing performed as good as currently accepted methodologies displaying 66% sensitivity, 100% specificity and 83% accuracy when evaluated at 300 Hz. In summary, a quantitative analysis to predict in vivo ocular irritation based on changes in RhCE capacitance by impedance spectroscopy is suggested. This methodology represents a non-invasive and non-destructive alternative that would enable the monitoring of reversible effects or repeated dose toxicity.


Asunto(s)
Epitelio Corneal , Alternativas a las Pruebas en Animales/métodos , Animales , Supervivencia Celular , Impedancia Eléctrica , Epitelio Corneal/metabolismo , Humanos , Irritantes/metabolismo , Irritantes/farmacología
7.
Pharmaceutics ; 13(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34452243

RESUMEN

Among several requirements for the manufacture of Advanced Therapy Medicinal Products (ATMP) are: following the guidelines of a pharmaceutical quality system, complying with Good Manufacturing Practice (GMP) and access to a cleanroom fulfilling strict environmental conditions (Class A work area and Class B environment). This makes ATMP expensive. Moreover, the production of many of these therapeutic products may also be unprofitable, as in most cases their use is limited to a few patients and to a single batch per manufacturing unit. To reduce costs, ATMP may be produced in a scaled-down system isolated from the external environment (isolator), allowing for placement of this facility in a Class D environment, which is much more permissive and less costly. In this work, we confirm that it is possible to manufacture bioengineered corneal epithelium inside an isolator while fulfilling all the safety assurance standards at an affordable cost for patients. This small-scale ultra-clean working environment complies with GMP guidelines and could be a solution for the high costs associated with conventional cleanroom ATMP production.

8.
Toxicol In Vitro ; 65: 104779, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31962200

RESUMEN

Defining the corrosive properties of chemical products generally involves the use of animal models for human health safety assessment. However, a few alternatives to animal experimentation are currently internationally accepted in order to reduce animal suffering. One of these alternatives makes use of in vitro reconstructed human epidermis (RhE) models and predicts corrosive potential based on the evaluation of cell viability after topical exposure. These models rely on its similarity to human skin, both functional and histological, and are currently worldwide marketed by a few private companies. In this manuscript, we describe the fundamentals of the production of a Do It Yourself (DIY) RhE model, and the operating procedures for the assessment of skin corrosion based on the guidelines proposed for the development of new alternative methods for skin corrosion. Our results indicate that the DIY-RhE model resembles the anatomy of the normal human epidermis as seen by immunohistochemical analysis. Moreover, barrier properties of DIY-RhE were assessed by the measure of Transepithelial Electrical Resistance. Applicability of DIY-RhE for the assessment of skin corrosion was evaluated by measuring cell viability after topical exposure of twelve reference chemicals for 3 and 60 min. Predictive performance resulted in 100% sensitivity, 100% specificity and 100% accuracy matching current requirements for new RhE models proposed for the discrimination of corrosives and non-corrosives.


Asunto(s)
Alternativas a las Pruebas en Animales , Cáusticos/toxicidad , Supervivencia Celular/efectos de los fármacos , Epidermis/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Pruebas de Irritación de la Piel , Células Cultivadas , Corrosión , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...