Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(3): 584-595.e6, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244546

RESUMEN

The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.


Asunto(s)
Adenosina/análogos & derivados , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , Regiones no Traducidas 5' , Microscopía por Crioelectrón , ARN Mensajero/genética , ARN Mensajero/metabolismo , Codón Iniciador/genética
2.
Sci Rep ; 12(1): 19583, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380112

RESUMEN

Covalent modifications of standard DNA/RNA nucleobases affect epigenetic regulation of gene expression by modulating interactions between nucleic acids and protein readers. We derive here the absolute binding free energies and analyze the binding modalities between key modified nucleobases 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and N6-methyladenine (m6A) and all non-prolyl/non-glycyl protein side chains using molecular dynamics simulations and umbrella sampling in both water and methanol, the latter mimicking the low dielectric environment at the dehydrated nucleic-acid/protein interfaces. We verify the derived affinities by comparing against a comprehensive set of high-resolution structures of nucleic-protein complexes involving 5mC. Our analysis identifies protein side chains that are highly tuned for detecting cytosine methylation as a function of the environment and can thus serve as microscopic readers of epigenetic marks. Conversely, we show that the relative ordering of sidechain affinities for 5hmC and m6A does not differ significantly from those for their precursor bases, cytosine and adenine, respectively, especially in the low dielectric environment. For those two modified bases, the effect is more nuanced and manifests itself primarily at the level of absolute changes in the binding free energy. Our results contribute towards establishing a quantitative foundation for understanding, predicting and modulating the interactions between modified nucleic acids and proteins at the atomistic level.


Asunto(s)
5-Metilcitosina , Epigénesis Genética , 5-Metilcitosina/metabolismo , Citosina/metabolismo , Proteínas/metabolismo , Metilación de ADN , ADN/química
3.
Nat Commun ; 13(1): 5577, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151080

RESUMEN

In the barley ß-D-glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures ß-D-glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric ß-D-glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-ß-D-glucosidase. Investigations of reactant movements on the nanoscale reveal that processivity is sensitive to mutation-specific alterations of the tryptophan clamp. While wild-type and W434H utilise a lateral cavity for glucose displacement and sliding of (1,3)-linked hydrolytic products through the catalytic site without dissociation, consistent with their high hydrolytic rates, W434A does not adopt processive catalysis. Phylogenomic analyses of GH3 hydrolases disclose the evolutionary advantage of the tryptophan clamp that confers broad specificity, high catalytic efficiency, and processivity.


Asunto(s)
Glicósido Hidrolasas , Triptófano , Cristalografía por Rayos X , Glucosa , Glucosidasas/química , Glucósidos , Glicósido Hidrolasas/metabolismo , Glicósidos , Cinética , Plantas/metabolismo , Especificidad por Sustrato
4.
Chemistry ; 28(14): e202200148, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35049087

RESUMEN

The conformational changes in a sugar moiety along the hydrolytic pathway are key to understand the mechanism of glycoside hydrolases (GHs) and to design new inhibitors. The two predominant itineraries for mannosidases go via O S2 →B2,5 →1 S5 and 3 S1 →3 H4 →1 C4 . For the CAZy family 92, the conformational itinerary was unknown. Published complexes of Bacteroides thetaiotaomicron GH92 catalyst with a S-glycoside and mannoimidazole indicate a 4 C1 →4 H5 /1 S5 →1 S5 mechanism. However, as observed with the GH125 family, S-glycosides may not act always as good mimics of GH's natural substrate. Here we present a cooperative study between computations and experiments where our results predict the E5 →B2,5 /1 S5 →1 S5 pathway for GH92 enzymes. Furthermore, we demonstrate the Michaelis complex mimicry of a new kind of C-disaccharides, whose biochemical applicability was still a chimera.


Asunto(s)
Glicósidos , Manosidasas , Glicósido Hidrolasas/metabolismo , Glicósidos/química , Manosidasas/química , Conformación Molecular
5.
Biochimie ; 195: 90-99, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34826537

RESUMEN

Glycoside hydrolase family 31 (GH31) is a diversified family of anomer-retaining α-glycoside hydrolases, such as α-glucosidase and α-xylosidase, among others. Recently, GH31 α-N-acetylgalactosaminidases (Nag31s) have been identified to hydrolyze the core of mucin-type O-glycans and the crystal structure of a gut bacterium Enterococcus faecalis Nag31 has been reported. However, the mechanisms of substrate specificity and hydrolysis of Nag31s are not well investigated. Herein, we show that E. faecalis Nag31 has the ability to release N-acetylgalactosamine (GalNAc) from O-glycoproteins, such as fetuin and mucin, but has low activity against Tn antigen. Mutational analysis and crystal structures of the Michaelis complexes reveal that residues of the active site work in concert with their conformational changes to act on only α-N-acetylgalactosaminides. Docking simulations using GalNAc-attached peptides suggest that the enzyme mainly recognizes GalNAc and side chains of Ser/Thr, but not strictly other peptide residues. Moreover, quantum mechanics calculations indicate that the enzyme preferred p-nitrophenyl α-N-acetylgalactosaminide to Tn antigen and that the hydrolysis progresses through a conformational itinerary, 4C1 → 1S3 → 4C1, in GalNAc of substrates. Our results provide novel insights into the diversification of the sugar recognition and hydrolytic mechanisms of GH31 enzymes.


Asunto(s)
Glicósido Hidrolasas , Dominio Catalítico , Glicósido Hidrolasas/química , Hidrólisis , Especificidad por Sustrato , alfa-N-Acetilgalactosaminidasa/química , alfa-N-Acetilgalactosaminidasa/metabolismo
6.
J Comput Chem ; 42(21): 1526-1534, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33982793

RESUMEN

MonteCarbo is an open-source software to construct simple 5-, 6-, and 7-membered ring multifunctionalized monosaccharides and nucleobases and dock them into the active site of carbohydrate-active enzymes. The core bash script executes simple orders to generate the Z-matrix of the neutral molecule of interest. After that, a Fortran90 code based on a pseudo-random number generator (Monte Carlo method) is executed to assign dihedral angles to the different rotamers present in the structure (ring and rotating functional groups). The program also has a generalized internal coordinates (GIC) implementation of the Cremer and Pople puckering coordinates ring. Once the structures are generated and optimized, a second code is ready to execute in serial the docking of multiple conformers in the active site of a wide family of enzymes.


Asunto(s)
Adhesinas de Escherichia coli/química , Carbohidratos/química , Proteínas Fimbrias/química , Simulación del Acoplamiento Molecular , Monosacáridos/química , Programas Informáticos , Adhesinas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Método de Montecarlo
7.
Chempluschem ; 85(11): 2534-2541, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33245201

RESUMEN

By employing the computational protocol for calculation of reduction potentials of the Fe4 S4 -containing species validated using a representative series of well-defined synthetic complexes, we focused on redox properties of two prototypical radical SAM enzymes to reveal how they transform SAM into the reactive 5'-deoxyadenosyl radical, and how they tune this radical for its proper biological function. We found the reduction potential of SAM is indeed elevated by 0.3-0.4 V upon coordination to Fe4 S4 , which was previously speculated in the literature. This makes a generation of 5'-deoxyadenosyl radical from SAM less endergonic (by ca. 7-9 kcal mol-1 ) and hence more feasible in both enzymes as compared to the identical process in water. Furthermore, our calculations indicate that the enzyme-bound 5'-deoxyadenosyl radical has a significantly lower reduction potential than in referential aqueous solution, which may help the enzymes to suppress potential side redox reactions and simultaneously elevate its proton-philic character, which may, in turn, promote the radical hydrogen-atom abstraction ability.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , S-Adenosilmetionina/metabolismo , Radicales Libres/química , Radicales Libres/metabolismo , Proteínas Hierro-Azufre/química , Oxidación-Reducción , S-Adenosilmetionina/química
8.
Nanomaterials (Basel) ; 9(10)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31623410

RESUMEN

This work presents experimental and computational studies on ZnO formation after decomposition of a sol-gel precursor containing ethanolamine and Zn(II) acetate. The structural modifications suffered during decomposition of the monomeric and dimeric Zn(II) complexes formed, containing bidentate deprotonated ethanolamine and acetato ligands, have been described experimentally and explained via Car-Parrinello Molecular Dynamics. Additional metadynamics simulations provide an overview of the dimer evolution by the cleavage of the Zn-N bond, the structural changes produced and their effects on the Zn(II) environment. The results provide conclusive evidence of the relevance of ethanolamine used as a stabilizer in the formation of ZnO.

9.
Front Chem ; 7: 269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114783

RESUMEN

By means of QM(DFT)/MM metadynamics we have unraveled the hydrolytic reaction mechanism of Neisseria polysaccharea amylosucrase (NpAS), a member of GH13 family. Our results provide an atomistic picture of the active site reorganization along the catalytic double-displacement reaction, clarifying whether the glycosyl-enzyme reaction intermediate features an α-glucosyl unit in an undistorted 4 C 1 conformation, as inferred from structural studies, or a distorted 1 S 3-like conformation, as expected from mechanistic analysis of glycoside hydrolases (GHs). We show that, even though the first step of the reaction (glycosylation) results in a 4 C 1 conformation, the α-glucosyl unit undergoes an easy conformational change toward a distorted conformation as the active site preorganizes for the forthcoming reaction step (deglycosylation), in which an acceptor molecule, i.e., a water molecule for the hydrolytic reaction, performs a nucleophilic attack on the anomeric carbon. The two conformations (4 C 1 ad E 3) can be viewed as two different states of the glycosyl-enzyme intermediate (GEI), but only the E 3 state is preactivated for catalysis. These results are consistent with the general conformational itinerary observed for α-glucosidases.

10.
J Am Chem Soc ; 139(3): 1085-1088, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28026180

RESUMEN

Conformational analysis of enzyme-catalyzed mannoside hydrolysis has revealed two predominant conformational itineraries through B2,5 or 3H4 transition-state (TS) conformations. A prominent unassigned catalytic itinerary is that of exo-1,6-α-mannosidases belonging to CAZy family 125. A published complex of Clostridium perfringens GH125 enzyme with a nonhydrolyzable 1,6-α-thiomannoside substrate mimic bound across the active site revealed an undistorted 4C1 conformation and provided no insight into the catalytic pathway of this enzyme. We show through a purely computational approach (QM/MM metadynamics) that sulfur-for-oxygen substitution in the glycosidic linkage fundamentally alters the energetically accessible conformational space of a thiomannoside when bound within the GH125 active site. Modeling of the conformational free energy landscape (FEL) of a thioglycoside strongly favors a mechanistically uninformative 4C1 conformation within the GH125 enzyme active site, but the FEL of corresponding O-glycoside substrate reveals a preference for a Michaelis complex in an OS2 conformation (consistent with catalysis through a B2,5 TS). This prediction was tested experimentally by determination of the 3D X-ray structure of the pseudo-Michaelis complex of an inactive (D220N) variant of C. perfringens GH125 enzyme in complex with 1,6-α-mannobiose. This complex revealed unambiguous distortion of the -1 subsite mannoside to an OS2 conformation, matching that predicted by theory and supporting an OS2 → B2,5 → 1S5 conformational itinerary for GH125 α-mannosidases. This work highlights the power of the QM/MM approach and identified shortcomings in the use of nonhydrolyzable substrate analogues for conformational analysis of enzyme-bound species.


Asunto(s)
Manosa/química , Simulación de Dinámica Molecular , Teoría Cuántica , alfa-Manosidasa/química , Clostridium perfringens/enzimología , Manosa/análogos & derivados , Manosa/metabolismo , Estructura Molecular , Conformación Proteica , alfa-Manosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...