Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 329: 117131, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586326

RESUMEN

The fate and presence of nanoplastics in wastewater treatment systems is a topic of increasing interest. Furthermore, challenges related to their quantification and identification have made it difficult to set up experimental conditions and compare results between studies. In this study, the effect of 100 nm polystyrene nanoplastics on activated sludge was evaluated. A concentration of 2 µg/L was used to continuously feed a sequencing batch reactor (SBR-NPs). Under the experimental conditions used in this study, no changes were observed in the process performance of the SBR-NPs compared to the reactor used as a control. Neither nitrification nor organic matter removal efficiency, which was 96% for both SBRs, were affected by the presence of 100 nm polystyrene nanoplastics, which suggests that the tested nanoplastics were not sufficiently toxic to the biomass. Although no significant differences in the relative abundances of predominant phyla between SBR-Control and SBR-NPs were observed, a slight shift in the relative abundance of Patescibacteria (1.5 ± 0.6% and 3.7 ± 0.8% in SBR-Control and SBR-NPs, respectively, at the end of the test) occurred. The higher abundance of this phylum in SBR-NPs compared to SBR-Control may suggest that these bacteria have some sensitivity to the presence of 100 nm polystyrene nanoplastics. Furthermore, even with the absence of nitrification inhibition, it was observed stagnation of the growth of Nitrotoga bacteria in SBR-NPs, which also suggests that the polystyrene nanoplastics could have an inhibitory effect on these cells and an impact on nitrification in the long term.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Microplásticos , Poliestirenos , Biomasa , Reactores Biológicos , Bacterias , Nitrógeno
2.
Sci Total Environ ; 778: 146355, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030382

RESUMEN

In this work, the influence of bisphenol A (BPA) on biological wastewater treatment was studied. For it, two sequencing batch reactors (SBRs) were operated for three months. Both SBRs were fed with synthetic wastewater (SW), adding 1 mg·L-1 of BPA into the feed of reactor SBR-BPA, while the other one operated without BPA as a control reactor (SBR-B). In addition, batch experiments were performed with adapted and non-adapted activated sludge, simulating the reaction step of SBR-BPA, to determine the pathways for BPA removal. Results of batch experiments showed that adsorption and biodegradation were the only significant BPA removal routes. BPA removal by biodegradation was more efficient when adapted biomass was used in the tests (32.2% and 8.2% with adapted and non-adapted biomass, respectively), while BPA adsorption removal route was similar in both types of activated sludge (around 40%). Regarding the SBRs experiments, after 16 days no BPA concentration was detected in SBR-BPA effluent. In the adaptation process, SBR-BPA biomass was more sensitive to low temperatures resulting in higher effluent turbidity, COD and soluble microbial products concentrations than in SBR-B. However, once temperature increased, adapted biomass from SBR-BPA presented higher activity than SBR-B biomass, showing higher values of sludge production, microbial hydrolytic enzymatic activities and specific dynamic respiration rate. The bacterial community study revealed the increase of abundance of Proteobacteria (especially Thiothrix species) and Actinobacteria (especially Nocardioides species) phyla at the expense of Bacteroidetes and Chloroflexi phyla in SBR-BPA during its operation.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Compuestos de Bencidrilo , Biomasa , Reactores Biológicos , Fenoles , Eliminación de Residuos Líquidos , Aguas Residuales/análisis
3.
Water Res ; 142: 129-137, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29864648

RESUMEN

Tannery wastewaters are difficult to treat biologically due to the high salinity and organic matter concentration. Conventional treatments, like sequential batch reactors (SBR) and membrane bioreactors (MBR), have showed settling problems, in the case of SBR, and ultrafiltration (UF) membrane fouling in the case of MBR, slowing their industrial application. In this work, the treatment of tannery wastewater with an osmotic membrane bioreactor (OMBR) is assessed. Forward osmosis (FO) membranes are characterized by a much lower fouling degree than UF membranes. The permeate passes through the membrane pores (practically only water by the high membrane rejection) from the feed solution to the draw solution, which is also an industrial wastewater (ammonia absorption effluent) in this work. Experiments were carried out at laboratory scale with a FO CTA-NW membrane from Hydration Technology Innovations (HTI). Tannery wastewater was treated by means of an OMBR using as DS an actual industrial wastewater mainly consisting of ammonium sulphate. The monitoring of the biological process was carried out with biological indicators like microbial hydrolytic enzymatic activities, dissolved and total adenosine triphosphate (ATP) in the mixed liquor and microbial population. Results indicated a limiting conductivity in the reactor of 35 mS cm-1 (on the 43th operation day), from which process was deteriorated. This process performance diminution was associated by a high decrease of the dehydrogenase activity and a sudden increase of the protease and lipase activities. The increase of the bacterial stress index also described appropriately the process performance. Regarding the relative abundance of bacterial phylotypes, 37 phyla were identified in the biomass. Proteobacteria were the most abundant (varying the relative abundance between 50.29% and 34.78%) during the first 34 days of operation. From this day on, Bacteroidetes were detected in a greater extent varying the relative abundance of this phylum between 27.20% and 40.45%.


Asunto(s)
Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/instrumentación , Aguas Residuales/química , Adenosina Trifosfato/metabolismo , Amoníaco , Sulfato de Amonio/análisis , Sulfato de Amonio/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Enzimas/metabolismo , Residuos Industriales , Membranas Artificiales , Consorcios Microbianos , Ósmosis , Salinidad , Ultrafiltración/instrumentación , Eliminación de Residuos Líquidos/métodos
4.
J Environ Manage ; 203(Pt 1): 349-357, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28806651

RESUMEN

Sludge production in wastewater treatment plants is nowadays a big concern due to the high produced amounts and their characteristics. Consequently, the study of techniques that reduce the sludge generation in wastewater treatment plants is becoming of great importance. In this work, four laboratory sequencing batch reactors (SBRs), which treated municipal wastewater, were operated to study the effect of adding the metabolic uncoupler 3,3',4',5-tetrachlorosalicylanilide (TCS) on the sludge reduction, the SBRs performance and the microbial hydrolytic enzymatic activities (MHEA). In addition, different operating conditions of the SBRs were tested to study the effect of the TCS on the process: two dissolved oxygen (DO) concentrations (2 and 9 mg L-1) and two F/M ratio (0.18 and 0.35 g COD·g MLVSS-1·d-1). The sludge production decreased under high DO concentrations. At the same time, the DNA and EPS production increased in the four SBRs. After these stress conditions, the performance of the reactors were recovered when DO was around 2 mg L-1. From that moment on, results showed that TCS addition implied a reduction of the adenosine triphosphate (ATP) production, which implied a decrease in the sludge production. In spite of this reduction, the SBRs performances did not decay due to the increase in the global MHEA. Additionally, the sludge reduction was enhanced by the increase of the F/M ratio, achieving 28% and 60% of reduction for the low and the high F/M ratio, respectively.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Reactores Biológicos , Salicilanilidas , Aguas Residuales
5.
J Environ Manage ; 182: 406-411, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27505165

RESUMEN

Nowadays cost reduction is a very important issue in wastewater treatment plants. One way, is to minimize the sludge production. Microorganisms break down the organic matter into inorganic compounds through catabolism. Uncoupling metabolism is a method which promote catabolism reactions instead of anabolism ones, where adenosine triphosphate synthesis is inhibited. In this work, the influence of the addition of para-nitrophenol and a commercial reagent to a sequencing batch reactor (SBR) on sludge production and process performance has been analyzed. Three laboratory SBRs were operated in parallel to compare the effect of the addition of both reagents with a control reactor. SBRs were fed with synthetic wastewater and were operated with the same conditions. Results showed that sludge production was slightly reduced for the tested para-nitrophenol concentrations (20 and 25 mg/L) and for a LODOred dose of 1 mL/day. Biological process performance was not influenced and high COD removals were achieved.


Asunto(s)
Reactores Biológicos , Nitrofenoles/metabolismo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos
6.
Water Res ; 100: 517-525, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27235772

RESUMEN

In the last years, biological treatment plants for the previously separated organic fraction from municipal solid wastes (OFMSW) have gained importance. In these processes a liquid effluent (liquid fraction from the digestate and leachate from composting piles), which has to be treated previously to its discharge, is produced. In this paper, the characteristics of the mixed liquor from two full-scale membrane bioreactors treating the effluents of two OFMSW treatment plants have been evaluated in view to study their influence on membrane fouling in terms of filterability. For that, the mixed liquor samples have been ultrafiltrated in an UF laboratory plant. Besides, the effect of the influent characteristics to MBRs and the values of the chemical and physical parameters of the mixed liquors on the filterability have been studied. Results showed that the filterability of the mixed liquor was strongly influenced by the soluble microbial products in the mixed liquors and the influent characteristics to MBR. Permeate flux of MBR mixed liquor treating the most polluted wastewater was considerable the lowest (around 20 L/m(2) h for some samples), what was explained by viscosity and soluble microbial products concentration higher than those measured in other MBR mixed liquor.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Reactores Biológicos , Membranas Artificiales , Ríos , Administración de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...