Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 9: 1183, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233389

RESUMEN

Background: Interleukin-17 (IL-17) and Rho-kinase (ROCK) play an important role in regulating the expression of inflammatory mediators, immune cell recruitment, hyper-responsiveness, tissue remodeling, and oxidative stress. Modulation of IL-17 and ROCK proteins may represent a promising approach for the treatment of this disease. Objective: To study the effects of an anti-IL17 neutralizing antibody and ROCK inhibitor treatments, separately and in combination, in a murine model of chronic allergy-induced lung inflammation. Methods: Sixty-four BALBc mice, were divided into eight groups (n = 8): SAL (saline-instilled); OVA (exposed-ovalbumin); SAL-RHOi (saline and ROCK inhibitor), OVA-RHOi (exposed-ovalbumin and ROCK inhibitor); SAL-anti-IL17 (saline and anti-IL17); OVA-anti-IL17 (exposed-ovalbumin and anti-IL17); SAL-RHOi-anti-IL17 (saline, ROCK inhibitor and anti-IL17); and OVA-RHOi-anti-IL17 (exposed-ovalbumin, anti-IL17, and ROCK inhibitor). A 28-day protocol of albumin treatment was used for sensitization and induction of pulmonary inflammation. The anti-IL17A neutralizing antibody (7.5 µg per treatment) was administered by intraperitoneal injection and ROCK inhibitor (Y-27632) intranasally (10 mg/kg), 1 h prior to each ovalbumin challenge (days 22, 24, 26, and 28). Results: Treatment with the anti-IL17 neutralizing antibody and ROCK inhibitor attenuated the percentage of maximal increase of respiratory system resistance and respiratory system elastance after challenge with methacholine and the inflammatory response markers evaluated (CD4+, CD8+, ROCK1, ROCK2, IL-4, IL-5, IL-6, IL-10 IL-13, IL-17, TNF-α, TGF-ß, NF-κB, dendritic cells, iNOS, MMP-9, MMP-12, TIMP-1, FOXP3, isoprostane, biglycan, decorin, fibronectin, collagen fibers content and gene expression of IL-17, VAChT, and arginase) compared to the OVA group (p < 0.05). Treatment with anti-IL17 and the ROCK inhibitor together resulted in potentiation in decreasing the percentage of resistance increase after challenge with methacholine, decreased the number of IL-5 positive cells in the airway, and reduced, IL-5, TGF-ß, FOXP3, ROCK1 and ROCK2 positive cells in the alveolar septa compared to the OVA-RHOi and OVA-anti-IL17 groups (p < 0.05). Conclusion: Anti-IL17 treatment alone or in conjunction with the ROCK inhibitor, modulates airway responsiveness, inflammation, tissue remodeling, and oxidative stress in mice with chronic allergic lung inflammation.

2.
Lipids Health Dis ; 17(1): 55, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29554895

RESUMEN

BACKGROUND: We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. METHODS: For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 µM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. RESULTS: Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. CONCLUSIONS: Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Ratones , Oxidación-Reducción/efectos de los fármacos , Triglicéridos/metabolismo
3.
J Physiol ; 594(21): 6301-6317, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27558442

RESUMEN

KEY POINTS: Fish oil (FO), rich in omega-3 polyunsaturated fatty acids, has beneficial effects on changes induced by obesity and partially prevents associated comorbidities. The effects of FO on adipocytes from different adipose tissue depots in high-fat (HF) diet induced obese mice have not been uninvestigated. This is the first study to examine the effects of FO on changes in metabolism and adipokine production in adipocytes from s.c. (inguinal; ING) or visceral (retroperitoneal; RP) white adipose depots in a HF diet-induced obese mice. Unlike most studies performed previously, FO supplementation was initiated 4 weeks before the induction of obesity. HF diet caused marked changes in ING (glucose uptake and secretion of adiponectin, tumour necrosis factor-α and interleukin-6 in ING) and RP (lipolysis, de novo lipogenesis and secretion of pro-inflammatory cytokines) adipose depots. Previous and concomitant FO administration prevented the changes in ING and RP adipocytes induced by the HF diet. ABSTRACT: In the present study, we investigated the effect of fish oil (FO) on metabolism and adipokine production by adipocytes from s.c. (inguinal; ING) and visceral (retroperitoneal; RP) white adipose depots in high-fat (HF) diet-induced obese mice. Mice were divided into CO (control diet), CO+FO, HF and HF+FO groups. The HF group presented higher body weight, glucose intolerance, insulin resistance, higher plasma total and low-density lipoprotein cholesterol levels, and greater weights of ING and RP adipose depots accompanied by hypertrophy of the adipocytes. FO exerted anti-obesogenic effects associated with beneficial effects on dyslipidaemia and insulin resistance in mice fed a HF diet (HF+FO group). HF raised RP adipocyte lipolysis and the production of pro-inflammatory cytokines and reduced de novo synthesis of fatty acids, whereas, in ING adipocytes, it decreased glucose uptake and adiponectin secretion but did not change lipolysis. Therefore, the adipose depots play different roles in HF diet-induced insulin resistance according to their location in the body. Concerning cytokine secretion, adipocytes per se in addition to white adopise tissue infiltrated leukocytes have to be considered in the aetiology of the comorbidities associated with obesity. Evidence is presented showing that previous and concomitant administration of FO can prevent changes in metabolism and the secretion of hormones and cytokines in ING and RP adipocytes induced by HF.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipoquinas/metabolismo , Aceites de Pescado/farmacología , Grasa Intraabdominal/metabolismo , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Adipocitos/metabolismo , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Aceites de Pescado/uso terapéutico , Interleucina-6/metabolismo , Grasa Intraabdominal/citología , Grasa Intraabdominal/efectos de los fármacos , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Grasa Subcutánea/citología , Grasa Subcutánea/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
4.
J Pineal Res ; 39(2): 178-84, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16098096

RESUMEN

The current study investigated the effects of chronic training and pinealectomy on the lipogenic and lipolytic activity of adipose tissue. Pinealectomized and sham-operated adult male Wistar rats were distributed in to four subgroups: pinealectomized untrained, pinealectomized trained, control untrained and control trained. At the end of the training period (8 wk) the rats were killed. Blood samples were collected for glucose, insulin and leptin determinations. Peri-epididymal adipocytes were isolated for measurement of in vitro rates of lipolysis and incorporation of substrates (D-[U-14C]-glucose, L-[U-14C]-lactate, [2-14C]-acetate and [1-14C]-palmitate) into lipids, and samples of epididymal adipose tissue were homogenized for evaluation of glucose-6-phosphate dehydrogenase maximal activity. Pinealectomy resulted in a significantly increased lipolytic capacity in response to isoproterenol and a decrease in circulating leptin levels without affecting the rates of incorporation of different substrates into lipids. However, only in the intact control group did training promote a higher basal and isoproterenol-stimulated lipolysis, increase the incorporation of palmitate (esterification), decrease the incorporation of acetate (lipogenesis) into lipids and diminish circulating leptin levels. These effects of exercise training were not seen in pinealectomized rats. However, pinealectomized trained animals showed a marked reduction in lipolysis and an increased rate of acetate incorporation. In conclusion, we demonstrated for the first time that the pineal gland plays an important role in the regulation of lipid metabolism in such a way that its absence caused a severe alteration in the balance between lipogenesis and lipolysis, which becomes evident with the adaptation to exercise training.


Asunto(s)
Adaptación Fisiológica/fisiología , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Lipólisis , Condicionamiento Físico Animal/fisiología , Glándula Pineal/cirugía , Animales , Radioisótopos de Carbono , Masculino , Ratas , Ratas Wistar
5.
J Pineal Res ; 38(4): 278-83, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15813905

RESUMEN

This study investigated the effects of pinealectomy and exercise training on rat adipose tissue metabolism. Pinealectomized (PINX) and sham-operated (CONTROL) adult male Wistar rats were subdivided into four subgroups, including PINX untrained, PINX trained, CONTROL untrained and CONTROL trained. At the end of the training period (8 wk), the rats were killed and peri-epididymal adipocytes were isolated for in vitro insulin-stimulated glucose uptake, conversion of D-[U-14C]-glucose, l-[U-14C]-lactate, [2-14C]-acetate and [1-14C]-palmitate into 14CO2, and insulin binding. Pinealectomy resulted in a significantly decreased insulin-stimulated glucose uptake in adipocytes without affecting insulin-binding capacity. However, in intact control animals only, training promoted a higher baseline glucose uptake in adipocytes. Training influenced the adipocyte ability to oxidize the different substrates: the rates of glucose and palmitate oxidation increased while the rates of lactate and acetate diminished. Nevertheless, these effects of exercise training were not seen in pinealectomized rats. Additionally, an increase in palmitate oxidation was observed in sedentary pinealectomized animals. In conclusion, these data show that the pineal gland alters the patterns of substrate utilization by the adipocyte, in such a way that its absence disrupts the ability to adapt to the metabolic demands evoked by exercise training in rats.


Asunto(s)
Adaptación Fisiológica , Tejido Adiposo/fisiología , Condicionamiento Físico Animal , Glándula Pineal/fisiología , Glándula Pineal/cirugía , Animales , Glucemia/análisis , Peso Corporal , Citrato (si)-Sintasa/metabolismo , Desoxiglucosa/administración & dosificación , Conducta Alimentaria , Insulina/sangre , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA