Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Genes (Basel) ; 14(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37107541

RESUMEN

Pyoderma is a common skin infection predominantly caused by Staphylococcus aureus. In addition to methicillin resistance, this pathogen is resistant to many other antibiotics, which ultimately limits the available treatment options. Therefore, the present study aimed to compare the antibiotic-resistance pattern, to detect the mecA gene and the genes encoding microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) in S. aureus isolates. A total of 116 strains were isolated from patients suffering with pyoderma. Disk diffusion assay was opted to perform antimicrobial susceptibility testing of the isolates. Out of the isolates tested, 23-42.2% strains appeared susceptible to benzylpenicillin, cefoxitin, ciprofloxacin and erythromycin. While linezolid was found to be the most effective anti-staphylococcal drug, followed by rifampin, chloramphenicol, clindamycin, gentamicin and ceftaroline. Out of 116 isolates, 73 (62.93%) were methicillin-resistant S. aureus (MRSA). Statistically significant (p ≤ 0.05) differences in antibiotic resistance patterns between MRSA and methicillin-susceptible S. aureus (MSSA) were found. A significant association of resistance to ceftaroline, rifampin, tetracycline, ciprofloxacin, clindamycin, trimethoprim-sulfamethoxazole and chloramphenicol was found in MRSA. However, no significant difference was observed between MRSA and MSSA for resistance against gentamicin, erythromycin or linezolid. All cefoxitin-resistant S. aureus, nonetheless, were positive for the mecA gene. femA was found in all the MRSA isolates. Among other virulence markers, bbp and fnbB were found in all the isolates, while can (98.3%), clfA and fnbA (99.1%) were present predominately in MRSA. Thus, this study offers an understanding of antibiotic resistance MSCRAMMs, mecA, and femA gene patterns in locally isolated strains of S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Piodermia , Humanos , Staphylococcus aureus/genética , Clindamicina/farmacología , Linezolid/farmacología , Cefoxitina/farmacología , Rifampin/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Eritromicina/farmacología , Eritromicina/uso terapéutico , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Cloranfenicol/farmacología , Piodermia/tratamiento farmacológico , Ceftarolina
2.
Biomed Pharmacother ; 158: 114114, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525818

RESUMEN

Tridax procumbens (cotton buttons) is a flowering plant with a medicinal reputation for treating infections, wounds, diabetes, and liver and kidney diseases. The present research was conducted to evaluate the possible protective effects of the T. procumbens methanolic extract (TPME) on an experimentally induced type 2 diabetes rat model. Wistar rats with streptozotocin (STZ)-induced diabetes were randomly allocated into five groups of five animals each, viz., a normal glycemic group (I), diabetic rats receiving distilled water group (II), diabetic rats with 150 (III) and 300 mg/kg of TPME (IV) groups, and diabetic rats with 100 mg/kg metformin group (V). All treatments were administered for 21 consecutive days through oral gavage. Results: Administration of the T. procumbens extract to diabetic rats significantly restored alterations in levels of fasting blood glucose (FBG), body weight loss, serum and pancreatic insulin levels, and pancreatic histology. Furthermore, T. procumbens significantly attenuated the dyslipidemia (increased cholesterol, low-density lipoprotein-cholesterol (LDL-C), triglycerides, and high-density lipoprotein (HDL) in diabetic rats), serum biochemical alterations (alanine transaminase (ALT), aspartate transaminase (AST), alanine phosphatase (ALP), blood urea nitrogen (BUN), creatinine, uric acid, and urea) and full blood count distortion in rats with STZ-induced diabetes. The TPME also improved the antioxidant status as evidenced by increased superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and decreased malondialdehyde (MDA); and decreased levels of cholinesterases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)), and proinflammatory mediators including nuclear factor (NF)-κB, cyclooxygenase (COX)- 2, and nitrogen oxide (NOx) in the brain of rats with STZ-induced diabetes compared to rats with STZ-induced diabetes that received distilled water. However, TPME treatment failed to attenuate the elevated monoamine oxidases and decreased dopamine levels in the brain of rats with STZ-induced diabetes. Extract characterization by liquid chromatography mass spectrometry (LC-MS) identified isorhamnetin (retention time (RT)= 3.69 min, 8.8%), bixin (RT: 25.06 min, 4.72%), and lupeol (RT: 25.25 min, 2.88%) as the three most abundant bioactive compounds that could be responsible for the bioactivity of the plant. In conclusion, the TPME can be considered a promising alternative therapeutic option for managing diabetic complications owing to its antidiabetic, antihyperlipidemic, antioxidant, and anti-inflammatory effects in rats with STZ-prompted diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dislipidemias , Hiperglucemia , Ratas , Animales , Antioxidantes/metabolismo , Ratas Wistar , Ciclooxigenasa 2/metabolismo , FN-kappa B/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucemia/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo , Diabetes Mellitus Experimental/metabolismo , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/análisis , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hígado , Glutatión/metabolismo , Estrés Oxidativo , Óxidos de Nitrógeno/metabolismo , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo , Colesterol/metabolismo , Cognición , Agua/farmacología , Estreptozocina/farmacología
3.
Inflammopharmacology ; 31(1): 1-7, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36418600

RESUMEN

In coronavirus disease 2019 (Covid-19) era, neuroinflammation may develop due to neuronal tropism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and/or associated immune activation, cytokine storm, and psychological stress. SARS-CoV-2 infection and linked cytokine storm may cause blood-brain barrier (BBB) injury through which activated immune cells and SARS-CoV-2 can pass into the brain causing activation of glial cells with subsequent neuroinflammation. Different therapeutic regimens were suggested to alleviate Covid-19-induced neuroinflammation. Since glibenclamide has anti-inflammatory and neuroprotective effects, it could be effective in mitigation of SARS-CoV-2 infection-induced neuroinflammation. Glibenclamide is a second-generation drug from the sulfonylurea family, which acts by inhibiting the adenosine triphosphate (ATP)-sensitive K channel in the regulatory subunit of type 1 sulfonylurea receptor (SUR-1) in pancreatic ß cells. Glibenclamide reduces neuroinflammation and associated BBB injury by inhibiting the nod-like receptor pyrin 3 (NLRP3) inflammasome, oxidative stress, and microglial activation. Therefore, glibenclamide through inhibition of NLRP3 inflammasome, microglial activation, and oxidative stress may attenuate SARS-CoV-2-mediated neuroinflammation.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Gliburida/farmacología , Enfermedades Neuroinflamatorias , Síndrome de Liberación de Citoquinas , SARS-CoV-2
4.
Naunyn Schmiedebergs Arch Pharmacol ; 396(3): 453-468, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36460816

RESUMEN

A novel coronavirus known as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a potential cause of acute respiratory infection called coronavirus disease 2019 (COVID-19). The binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2) induces a series of inflammatory cellular events with cytopathic effects leading to cell injury and hyperinflammation. Severe SARS-CoV-2 infection may lead to dysautonomia and sympathetic storm due to dysfunction of the autonomic nervous system (ANS). Therefore, this review aimed to elucidate the critical role of the cholinergic system (CS) in SARS-CoV-2 infection. The CS forms a multi-faceted network performing diverse functions in the body due to its distribution in the neuronal and non-neuronal cells. Acetylcholine (ACh) acts on two main types of receptors which are nicotinic receptors (NRs) and muscarinic receptors (MRs). NRs induce T cell anergy with impairment of antigen-mediated signal transduction. Nicotine through activation of T cell NRs inhibits the expression and release of the pro-inflammatory cytokines. NRs play important anti-inflammatory effects while MRs promote inflammation by inducing the release of pro-inflammatory cytokines. SARS-CoV-2 infection can affect the morphological and functional stability of CS through the disruption of cholinergic receptors. SARS-CoV-2 spike protein is similar to neurotoxins, which can bind to nicotinic acetylcholine receptors (nAChR) in the ANS and brain. Therefore, cholinergic receptors mainly nAChR and related cholinergic agonists may affect the pathogenesis of SARS-CoV-2 infection. Cholinergic dysfunction in COVID-19 is due to dysregulation of nAChR by SARS-CoV-2 promoting the central sympathetic drive with the development of the sympathetic storm. As well, nAChR activators through interaction with diverse signaling pathways can reduce the risk of inflammatory disorders in COVID-19. In addition, nAChR activators may mitigate endothelial dysfunction (ED), oxidative stress (OS), and associated coagulopathy in COVID-19. Similarly, nAChR activators may improve OS, inflammatory changes, and cytokine storm in COVID-19. Therefore, nAChR activators like varenicline in virtue of its anti-inflammatory and anti-oxidant effects with direct anti-SARS-CoV-2 effect could be effective in the management of COVID-19.


Asunto(s)
COVID-19 , Receptores Nicotínicos , Humanos , SARS-CoV-2/metabolismo , Colinérgicos , Citocinas/metabolismo
5.
J Diabetes ; 14(12): 806-814, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36444166

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic endocrine disorder due to the reduction of insulin sensitivity and relative deficiency of insulin secretion. Growth differentiation factor 15 (GDF15) belongs to the transforming growth factor beta (TGF-ß) superfamily and was initially identified as macrophage inhibitory cytokine-1 (MIC-1). GDF15 is considered a cytokine with an anti-inflammatory effect and increases insulin sensitivity, reduces body weight, and improves clinical outcomes in diabetic patients. GDF15 acts through stimulation of glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL), which is highly expressed in the brain stem to induce taste aversion. Metformin belongs to the group of biguanides that are derived from the plant Galega officinalis. It is interesting to note that metformin is an insulin-sensitizing agent used as a first-line therapy for T2DM that has been shown to increase the circulating level of GDF15. Thus, the present review aims to determine the critical association of the GDF15 biomarker in T2DM and how metformin agents affect it. This review illustrates that metformin activates GDF15 expression, which reduces appetite and leads to weight loss in both diabetic and nondiabetic patients. However, the present review cannot give a conclusion in this regard. Therefore, experimental, preclinical, and clinical studies are warranted to confirm the potential role of GDF15 in T2DM patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Metformina , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Obesidad/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Factor 15 de Diferenciación de Crecimiento/uso terapéutico
6.
Oxid Med Cell Longev ; 2022: 3235031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425055

RESUMEN

Different ethnomedical benefits have been documented on different parts of Ackee (Blighia sapida); however, their roles in ameliorating oxidative damages are not well established. CdCl2 inhibitory effects on some oxidative-stress biomarkers and ameliorative potentials of Ackee leaves (AL) and arils (AS) methanolic extracts were studied using Drosophila melanogaster as a model. One to 3-day-old D. melanogaster flies were orally exposed to different concentrations of CdCl2 in their diet for 7 days. The fly's survival profile and negative geotaxis assays were subsequently analysed. Methanolic extracts of AL and AS treatments showed negative geotaxis behaviour, and extracts were able to ameliorate the effect of Cd2+ on catalase and GST activities and increase total thiol and GSH levels, while it reduced the H2O2 generation (p ≤ 0.05) when compared to the control. Furthermore, Cd2+ exhibited noncompetitive and uncompetitive enzyme inhibition on catalase and GST activities, respectively, which may have resulted in the formation of Enzyme-substrate-Cd2+ transition complexes, thus inhibiting the conversion of substrate to product. This study, thus, suggests that the Cd2+ mechanism of toxicity was associated with oxidative damage, as evidenced by the alteration in the oxidative stress-antioxidant imbalance, and that the AL and AS extracts possess essential phytochemicals that could alleviate possibly deleterious oxidative damage effects of environmental pollutants such as CdCl2. Thus, Ackee plant parts possess essential phytonutrients which could serve as valuable resources in heavy metal toxicity management.


Asunto(s)
Blighia , Animales , Blighia/química , Blighia/metabolismo , Drosophila melanogaster , Catalasa/metabolismo , Metanol , Peróxido de Hidrógeno/farmacología , Cadmio/toxicidad , Estrés Oxidativo , Biomarcadores
7.
Biomed Pharmacother ; 156: 113976, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36411668

RESUMEN

Hepatocellular carcinoma (HCC) is a malignant tumor with limited treatment options. Given this fact, it may be important to develop new molecular targeted therapies from natural products, especially those which are primary sources of effective anticancer drugs with distinct mechanisms. Moreover, the complementary use of traditional herbs or fruit may increase the possibility of finding curative options for cancer. Here we explore the anticancer effects and possible molecular mechanism of Barhi date extract using an HCC rat model. Thirty two male albino rats were arbitrarily allocated into four groups: a negative control group (NCG); a positive control group (PCG), which received CCl4 (1 ml/kg b.wt./ i.p.) twice a week for three months; a Barhi date extract (400 mg/kg b.wt./day/orally) treatment group (DTG) during the third month of CCl4 administration; and a cisplatin (1.5 mg/kg b.wt./ i.p.) treatment group ( CTG) during the third month of CCl4 administration. After treatment we performed biochemical analyses of all groups to assess relative eukaryotic initiation factor 2 alpha (eIF2α), extracellular signal-regulated kinases (ERKs), protein kinase RNA-like endoplasmic reticulum kinase (PERK), poly (ADP-ribose) polymerase (PARP), and CASPASE 3 protein content, and examined expression of the genes phosphatase and tensin homolog (PTEN) and protein kinase B (AKT). We also performed an immunohistochemistry assay for alpha-fetoprotein (AFP). Our data showed higher PARP and CASPASE3 levels and liver enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]) in the PCG compared to the DTG and the cisplatin treatment group CTG. However, we also found a significant decrease in PTEN in the PCG relative to both the DTG and the CTG. We conclude that the anti-tumor activity of Barhi date extract may be mediated by the inhibition of cell proliferation and apoptosis via the ERK /PARP/caspase3 pathway and the AKT/ PTEN signaling pathways.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Phoeniceae , Animales , Carcinoma Hepatocelular/patología , Cisplatino/uso terapéutico , Neoplasias Hepáticas/patología , Phoeniceae/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Ratas
8.
Curr Hypertens Rep ; 24(12): 687-692, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36342613

RESUMEN

PURPOSE OF REVIEW: Preeclampsia (PE) is a serious and distinct type of pregnancy-induced hypertension, with an incidence of 2-8% worldwide. PE is defined as pregnancy-related hypertension with proteinuria and peripheral edema after 20 weeks of gestation. Hypoxic placenta triggers the release of inflammatory and humoral substances into maternal circulation, leading to induction of oxidative stress, lipid peroxidation, endothelial dysfunction, and peripheral vasoconstriction. The objective of the present narrative review was to find the association between PE and hypoxia-inducible factor 1 (HIF-1) in pregnant women from a new perspective. RECENT FINDINGS: HIF-1 is the key transcription factor that regulates cellular responses to hypoxia and low oxygen tension. HIF-1α is involved in the differentiation and growth of the placenta mainly in the first and second trimesters. During normal gestation, HIF-1α responds to the alterations in oxygen tension, cytokine, and angiogenic factors release. HIF-1α is considered a key biomarker of placental function and vascularization during pregnancy. HIF-1α plays a crucial role in the pathogenesis of PE through activation of anti-angiogenic and inhibition of proangiogenic factors. As well, HIF-1α increases the expression of the p38MAPK and NLRP3 inflammasomes, which promote placental inflammation and dysfunction. HIF-1α acts as a potential link between inflammatory signaling pathways and the development of PE.


Asunto(s)
Hipertensión Inducida en el Embarazo , Preeclampsia , Femenino , Embarazo , Humanos , Preeclampsia/metabolismo , Placenta/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia , Oxígeno/metabolismo
9.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235300

RESUMEN

The current study focused on the laboratory approach in conjunction with computational methods for the synthesis and bioactivity assessment of unique 2-tetradecanoylimino-3-aryl-4-methyl-1,3-thiazolines (2a-2k). Processes included cyclizing 1-aroyl-3-arylthioureas with propan-2-one in the presence of trimethylamine and bromine. By using spectroscopic techniques and elemental analyses, structures were elucidated. To assess the electronic properties, density functional theory (DFT) calculations were made, while binding interactions of synthesized derivatives were studied by the molecular docking tool. Promising results were found during the evaluation of bioactivity of synthesized compounds against alkaline phosphatase. The drug likeliness score, an indicator used for any chemical entity posing as a drug, was within acceptable limits. The data suggested that most of the derivatives were potent inhibitors of alkaline phosphatase, which in turn may act as lead molecules to synthesize derivatives having desired pharmacological profiles for the treatment of specific diseases associated with abnormal levels of ALPs.


Asunto(s)
Fosfatasa Alcalina , Bromo , Fosfatasa Alcalina/metabolismo , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
10.
Molecules ; 27(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36296555

RESUMEN

Litsea glutinosa (L. glutinosa) is considered an evidence-based medicinal plant for the treatment of cancer, the leading cause of death worldwide. In our study, the in vitro antioxidant and in vivo anticancer properties of an essential ethno-medicinal plant, L. glutinosa, were examined using non-toxic doses and a phytochemical analysis was executed using gas-chromatography-mass-spectrometry. The in vitro antioxidant study of the L. glutinosa methanolic extract (LGBME) revealed a concentration-dependent antioxidant property. The bark extract showed promising antioxidant effects in the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. The strongest antioxidant activity was demonstrated at the maximum concentration (50 µg/mL). The IC50 values of the LGBME and BHT were 5.51 and 5.01 µg/mL, respectively. At the same concentration, the total antioxidant capacity of the LGBME was 0.161 µg/mL and the ferric reducing antioxidant power assay result of the LGBME was 1.783 µg/mL. In the cytotoxicity study, the LD50 of the LGBME and gallic acid were 24.93 µg/mL and 7.23 µg/mL, respectively. In the in vivo anticancer-activity studies, the LGBME, particularly at a dose of 150 mg/kg/bw, showed significant cell-growth inhibition, decreased tumor weight, increased mean survival rate, and upregulated the reduced hematological parameters in EAC (Ehrlich's ascites carcinoma)-induced Swiss albino mice. The highest cell-growth inhibition, 85.76%, was observed with the dose of 150 mg/kg/bw. Furthermore, the upregulation of pro-apoptotic genes (p53, Bax) and the downregulation of anti-apoptotic Bcl-2 were observed. In conclusion, LGBME extract has several bioactive phytoconstituents, which confirms the antioxidant and anticancer properties of L. glutinosa.


Asunto(s)
Antioxidantes , Litsea , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Metanol , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hidroxitolueno Butilado , Proteína p53 Supresora de Tumor , Proteína X Asociada a bcl-2 , Fitoquímicos/farmacología , Ácido Gálico
11.
Artículo en Inglés | MEDLINE | ID: mdl-36199544

RESUMEN

The study investigated the effects of Zingiber officinale root and Vernonia amygdalina leaf on the brain redox status of Wistar rats. Twenty-four (24) rats weighing 160 ± 20 g were randomly assigned into four (4) groups, each with six (6) rats. Animals in Group 1 (control) were orally administered distilled water (1 mL), while the test groups were orally administered 5 mg/mL of either Z. officinale, V. amygdalina infusion, or a combination of both, respectively, for 7 days. The rats were sacrificed at the end of treatments and blood and tissue were harvested and prepared for biochemical assays. Results showed that administration of V. amygdalina and Z. officinale, as well as their coadministration, reduced the levels of malondialdehyde (MDA), nitric oxide (NO), acetylcholinesterase (AChE), and myeloperoxidase (MPO) in rat brain tissue compared with the control group. Conversely, coadministration of V. amygdalina and Z. officinale increased the levels of reduced glutathione (GSH) in rat brain tissue compared with the control group. However, the administration of the infusions singly, as well as the combination of both infusions, did not have any effect on the rat brain levels of glutathione peroxidase (GPx) and catalase (CAT) antioxidant enzymes compared to the control. Taken together, the findings indicate that the V. amygdalina and Z. officinale tea infusions have favorable antioxidant properties in the rat brain. The findings are confirmatory and contribute to deepening our understanding of the health-promoting effects of V. amygdalina and Z. officinale tea infusions.

12.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1463-1475, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36063198

RESUMEN

Coronavirus disease 2019 (COVID-19) is a current pandemic disease caused by a novel severe acute respiratory syndrome coronavirus virus respiratory type 2 (SARS-CoV-2). SARS-CoV-2 infection is linked with various neurological manifestations due to cytokine-induced disruption of the blood brain barrier (BBB), neuroinflammation, and peripheral neuronal injury, or due to direct SARS-CoV-2 neurotropism. Of note, many repurposed agents were included in different therapeutic protocols in the management of COVID-19. These agents did not produce an effective therapeutic eradication of SARS-CoV-2, and continuing searching for novel anti-SARS-CoV-2 agents is a type of challenge nowadays. Therefore, this study aimed to review the potential anti-inflammatory and antioxidant effects of citicoline in the management of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Humanos , SARS-CoV-2 , Citidina Difosfato Colina , Pandemias , Barrera Hematoencefálica
13.
Eur J Med Res ; 27(1): 186, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36154838

RESUMEN

BACKGROUND: Recently, the coronavirus (COVID-19) pandemic is a chief public health disaster caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are no established effective preventive or therapeutic anti-COVID-19 drugs available except for some recently approved vaccines. Still, countless recent studies recommend various alternative and complementary approaches against COVID-19, which are medicinal herbs employed as traditional remedies to enhance immunity to struggle with viral infections. In addition, physicians worldwide are highly interested in vitamin and mineral supplements to help them combat COVID-19 either through protection or treatment. Dietary supplements specifically vitamin D, vitamin C, and zinc provide good prophylactic and therapeutic support to the presently available treatment regimens. In the present work, we have focused on plant-based remedies with promising anti-COVID-19 activities. AIM: To enable investigators and researchers to identify potential herbal compounds with anti-COVID activity to be used as promising therapies to combat this pandemic. MAIN BODY: This review highlights the recently published studies concerning natural traditional herbs, herbal bioactive metabolites, dietary supplements, and functional foods that could help prevent and/or treat COVID-19. Herein, we explored medicinal herbs as potential inhibitors of SARS-CoV-2 and discussed how these studies help form larger discussions of diet and disease. Moreover, by investigating the herbal bioactive components, we have outlined several medicinal herbs that can fight against COVID-19 by hindering SARS-CoV-2 replication and entry to its host cells, deterring the cytokine storm, and several other means. Finally, we have summarized various herbal products, functional foods, and dietary supplements with potent bioactive compounds which can inhibit and/or prevent COVID-19 disease progression. CONCLUSIONS: Based on the studies reviewed in this work, it was concluded with no doubt that phytochemical components present in various herbs could have a starring role in the deterrence and cure of coronavirus contagion.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Plantas Medicinales , Ácido Ascórbico , Humanos , Pandemias/prevención & control , Fitoquímicos , Plantas Medicinales/química , SARS-CoV-2 , Vitamina D/uso terapéutico , Vitaminas/uso terapéutico , Zinc
14.
J Trop Med ; 2022: 4271063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686207

RESUMEN

The present study was conducted to elucidate the prevalence of Cryptosporidium bovis in suckling and weaned cattle calves (Bubalus bubalis) from different governorates in northern, middle, and southern Egypt, such as Behera, Menofia, Qaliubiya, Assiut, and Sohag; result revealed that from the overall examined fecal samples (n = 825), the overall prevalence was 7.27%, the highest significant infection rate was in young suckling calves less than one month (8.2%), and seasonally, winter season has the highest significant level (11.24%), but sex and locality were of no significant effect on the prevalence of infection in this study. Gene sequencing and phylogenetic analysis of the 18SSU-rRNA gene of the local bovine isolate were performed, and it was found that C. bovis genotype was highly similar to human isolate, which provoke the zoonotic transmission of bovine isolate to humans and identified as a potential source for human cryptosporidiosis infection in Egypt.

15.
Biomed Pharmacother ; 152: 113225, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35671584

RESUMEN

Nephrotoxicity (NT) is a renal-specific situation caused by different toxins and drugs like non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs like diclofenac (DCF) lead to glomerular dysfunction. Pentoxifylline (PTX) and berberine (BER) have antioxidant and anti-inflammatory properties. Thus, the objective of the present study was to investigate the ameliorative effect of PTX, BER and their combination against DCF-mediated acute NT. Induction of acute NT was done via DCF injection (150 mg/kg I.P, for 6 days) in rats. PTX 200 mg/kg, BER 200 mg/kg and their combination were administrated for 6 days prior to DCF injection and concurrently with DCF for additional 6 days. Acute NT was evaluated biochemically and histopathologically by measuring blood urea (BU), serum creatinine (SCr), kidney injury molecule-1(KIM-1), integrin (ITG), and vitronectin (VTN), interleukin (IL)-18, Neutrophil gelatinase-associated lipocalin (NGAL), glomerular filtration rate (GFR), superoxide dismutase (SOD) and glutathione (GSH) and malondialdehyde (MDA) with the scoring of histopathological alterations. PTX, BER and their combination significantly (P < 0.05) attenuated biochemical and histopathological changes in DCF-mediated acute NT by amelioration of BU, SCr, KIM-1, ITG, VTN, IL-18, NGAL, GFR, SOD, GSH, MDA and scoring of histopathological alterations. The combined effects of PTX and BER produced more significant effects (P < 0.05) than either PTX or BER when used alone against DCF-induced acute NT. In conclusion, BER and BTX were found to have potential renoprotective effects against DCF-induced NT in rats by inhibiting inflammatory reactions and oxidative stress.


Asunto(s)
Berberina , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Pentoxifilina , Insuficiencia Renal , Animales , Antiinflamatorios/farmacología , Antiinflamatorios no Esteroideos/farmacología , Berberina/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Diclofenaco/farmacología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Glutatión/metabolismo , Inflamación/metabolismo , Riñón , Lipocalina 2/metabolismo , Masculino , Estrés Oxidativo , Pentoxifilina/farmacología , Pentoxifilina/uso terapéutico , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal/metabolismo , Superóxido Dismutasa/metabolismo
16.
Biomed Res Int ; 2022: 4122166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496049

RESUMEN

Drug-induced liver injury (DILI) is the main cause of liver damage mediated by the excretion of toxic active drug metabolites. Omega-3 fatty acids and vitamin C have potent antioxidant, anti-inflammatory, and antiapoptotic effects that could offer protection against oxidative stress and liver damage. This study evaluated the hepatoprotective effect of omega-3 and vitamin C alone as well as in a combined form in methotrexate- (MTX-) induced acute liver injury in mice. Male ICR mice of seven groups (7 mice per group) were used. Groups 1 (control group) and 2 (MTX) received 0.9% saline/day (po) for 9 days. Groups 3 and 4 received 100 and 200 mg/kg bw/day omega-3 (po), respectively, for 9 days. Groups 5 and 6 received 100 and 200 mg/kg bw/day vitamin C (po), respectively, for 9 days, while group 7 received omega-3 (100 mg/kg bw/day) and vitamin C (100 mg/kg bw/day) (po) for 9 days. All animals in groups 2 to 7 received 20 mg/kg/day MTX (I.P.) once on the 10th day. Our results revealed that MTX significantly induced the elevation of transaminases, alkaline phosphates (ALP), lactate dehydrogenase (LDH), and malonaldehyde (MDA) while depleting the levels of superoxide dismutase (SOD) and glutathione (GSH) when compared to the control group. Treatment with omega-3 fatty acids or vitamin C significantly attenuated the antioxidants and biochemical alterations in a dose-independent manner. Our molecular docking study of ligand-receptor interaction revealed that both ascorbic acid and omega-3 docked well to the binding cavity of LDH with high binding affinities of -5.20 and -4.50 kcal/mol, respectively. The histopathological features were also improved by treatment with omega-3 and vitamin C. The combined form of omega-3 and vitamin C showed a remarkable improvement in the liver enzymes, oxidative stress biomarkers, and the histopathological architecture of the mice. Conclusively, the combination of omega-3 and vitamin C demonstrated a synergistic therapeutic effect against MTX-intoxicated mice, hence representing a potential novel strategy for the management of drug-induced liver disorders.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ácidos Grasos Omega-3 , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Glutatión/metabolismo , Masculino , Metotrexato/farmacología , Ratones , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Vitaminas/farmacología
17.
Saudi J Biol Sci ; 29(4): 2219-2229, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531157

RESUMEN

Cercospora leaf spot caused by Cercospora beticola are among the most dangerous plant diseases on sugar beet plants. It causes heavy economic losses, whether on the yield of roots, the percentage of sugar in them, or the quality of sugar produced. In addition to the economic cost caused by chemical control, these chemical pesticides cause an imbalance in the ecosystem and harm the health of humans and animals. In an attempt to search for a safer method than pesticides and environmentally friendly, an evaluation of using biocontrol agents, Bacillus subtilis as cell suspension (108 cell/ml), was conducted in this study. Seeds extract of Moringa oleifera with two concentrations (25 and 50 g/L) and potassium bicarbonate at (5 and10 g/L (compared to fungicide Montoro 30% EC (Propiconazole 15% + Difenoconazole 15%). The evaluation results for twenty-five sugar beet varieties showed a significant discrepancy between these varieties in the extent of their susceptibility to infection with the disease under investigation. In-Vitro, B. subtilis induced an antagonist to C. beticola, and both M. oleifera seeds extract and potassium bicarbonate significantly reduced the linear growth of this pathogen. Under field conditions, the treatments used have given positive results in controlling Cercospora leaf spots. They significantly decreased the severity of disease and prevented C. beticola from creating conidiophores and conidiospores, along with examining their cell walls with the formation of plasmolysis of the fungus cells and reducing both the number and diameter of the spots on the surface leaves; this was demonstrated using a scanning electron microscope (SEM). It is worth noting that the best results obtained were most often when treated with M. oleifera seeds extract, followed by potassium bicarbonate, then cell suspension of B. subtilis. In addition, the percentage of the content of beet roots from total soluble solids and sucrose has improved significantly due to spraying sugar beet plants with the substances mentioned earlier. These treatments also contributed to a significant improvement in the enzymes polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase.

18.
Biomed Pharmacother ; 149: 112870, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367769

RESUMEN

Polycystic ovary syndrome (PCOS) is the most common gynaecological endocrine disease that causes anovulatory infertility. The current study aimed to explore the possible role of diacerein (DIA), an IL-1ß inhibitor, in treating letrozole-induced PCOS in rats that exhibit the metabolic and endocrinal criteria of PCOS patients. PCOS was induced in female Wistar rats by the oral administration of letrozole (1 mg/kg, per orally, p.o.) for 21 days. Rats were then treated with DIA (25 mg/kg/day, p.o.), DIA (50 mg/kg/day, p.o.), or metformin (2 mg/100 g/day, p.o.) for 14 days after the PCOS induction. PCOS resulted in a significantly higher body weight, ovarian weight, ovarian size, and cysts, as well as an elevation in serum testosterone, LH, insulin, glycemia, and lipid profile levels. All of these effects were significantly reduced by the DIA administration. Additionally, DIA remarkably inhibited the letrozole-induced oxidative stress in the ovaries, muscles, and liver by reducing the upraised levels of malondialdehyde and total nitrite and increasing the suppressed levels of superoxide dismutase and catalase. DIA enhanced the protective proteins Keap-1, Nrf2, and OH-1 levels. Finally, DIA inhibited the elevated mRNA levels of NLRP3 and caspase-1, the up-regulated inflammatory cytokines IL-6, TNF-α, and the IL-1ß/NFκB signaling pathway. Our results proved that DIA ameliorates letrozole-induced PCOS through its antioxidant and anti-inflammatory properties.


Asunto(s)
Síndrome del Ovario Poliquístico , Animales , Antraquinonas/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Letrozol/efectos adversos , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Ratas , Ratas Wistar
19.
Biomed Pharmacother ; 148: 112730, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35183996

RESUMEN

The increasing global burden of diabetes mellitus has called for the search for a therapeutic alternative that offers better activities and safety than conventional chemotherapy. Herein, we evaluated the neuroprotective and antioxidant properties of different fractions (ethyl acetate, N-butanol and residual aqueous) of Clompanus pubescens leaves in streptozotocin (STZ)-induced diabetic rats. Our results revealed a significant elevation in the levels of blood glucose, pro-inflammatory cytokines, lipid peroxidation, neuronal activities of acetylcholinesterase, butyrylcholinesterase, nitric oxide, epinephrine, norepinephrine, and Na+/K+-ATPase in diabetic non treated rats. In addition, decreased levels of enzymatic and non-enzymatic antioxidants were observed. Treatment with different fractions of C. pubescens leaves resulted in significant reversal of the biochemical alteration and improved the neurocognitive deficit in STZ induced diabetic rats. However, the ethyl-acetate fraction demonstrated higher activities than the other fractions and was characterized for its phytoconstituents, revealing the presence of Gallic acid (713.00 ppm), catechin (0.91 ppm), ferulic acid (0.98 ppm), rutin (59.82 ppm), quercetin (3.22 ppm) and kaempferol (4.07 ppm). Our molecular docking analysis revealed that these compounds exhibited different binding affinities and potentials for targeting BChE/AChE/ IL-1 ß/Na+ -K+ -ATPase. However, only Kampferol and ferulic exhibited good drug-like, ADMET, and permeability properties suitable for use as a neuronal drug target agent. Hence, the ethyl-acetate fraction of C. pubescens leaves could be considered as a source of promising bioactive metabolite for the treatment and management of cognitive impairments related to type II diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Acetilcolinesterasa/metabolismo , Animales , Antioxidantes/uso terapéutico , Glucemia/metabolismo , Butirilcolinesterasa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Regulación hacia Abajo , Interleucina-1beta/metabolismo , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Ratas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estreptozocina/efectos adversos
20.
Antibiotics (Basel) ; 11(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203823

RESUMEN

This work aimed to characterize S. aureus isolates from the eyes of healthy and clinically affected equines in the Kafrelsheikh Governorate, Egypt. A total of 110 animals were examined for the presence of S. aureus, which was isolated from 33 animals with ophthalmic lesions and 77 healthy animals. We also investigated the antimicrobial resistance profile, oxacillin resistance mechanism, and the major virulence factors implicated in many studies of the ocular pathology of pathogenic S. aureus. The association between S. aureus eye infections and potential risk factors was also investigated. The frequency of S. aureus isolates from clinically affected equine eyes was significantly higher than in clinically healthy equids. A significant association was found between the frequency of S. aureus isolation from clinically affected equine eyes and risk factors including age and season but not with sex or breed factors. Antimicrobial resistance to common antibiotics used to treat equine eyes was also tested. Overall, the isolates showed the highest sensitivity to sulfamethoxazole (100%) and the highest resistance to cephalosporin (90.67%) and oxacillin (90.48%). PCR was used to demonstrate that mecA was present in 100% of oxacillin- and ß-lactam-resistant S. aureus strains. The virulence factor genes Spa (x region), nuc, and hlg were identified in 62.5%, 100%, and 56%, of isolates, respectively, from clinically affected equines eyes. The severity of the eye lesions increased in the presence of γ-toxin-positive S. aureus. The phylogenetic tree of the Spa (x region) gene indicated a relationship with human reference strains isolated from Egypt as well as isolates from equines in Iran and Japan. This study provides insight into the prevalence, potential risk factors, clinical pictures, zoonotic potential, antimicrobial resistance, and ß-lactam resistance mechanism of S. aureus strains that cause eye infection in equines from Egypt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...