Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(13)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38563304

RESUMEN

Porphyrins are prime candidates for a host of molecular electronics applications. Understanding the electronic structure and the role of anchoring groups on porphyrins is a prerequisite for researchers to comprehend their role in molecular devices at the molecular junction interface. Here, we use the density functional theory approach to investigate the influence of anchoring groups on Ni and Zn diphenylporphyrin molecules. The changes in geometry, electronic structure, and electronic descriptors were evaluated. There are minimal changes observed in geometry when changing the metal from Ni to Zn and the anchoring group. However, we find that the distribution of electron density changes when changing the anchoring group in the highest occupied and lowest unoccupied molecular orbitals. This has a direct effect on electronic descriptors such as global hardness, softness, and electrophilicity. Additionally, the optical spectra of both Ni and Zn diphenylporphyrin molecules exhibit either blue or red shifts when changing the anchoring group. These results indicate the importance of the anchoring group on the electronic structure and optical properties of porphyrin molecules.

2.
Environ Res ; 238(Pt 2): 117288, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37797665

RESUMEN

Hydrogen production, catalytic organic synthesis, carbon dioxide reduction, environmental purification, and other major fields have all adopted photocatalytic technologies due to their eco-friendliness, ease of use, and reliance on sunlight as the driving force. Photocatalyst is the key component of photocatalytic technology. Thus, it is of utmost importance to produce highly efficient, stable, visible-light-responsive photocatalysts. CIS stands out among other visible-light-response photocatalysts for its advantageous combination of easy synthesis, non-toxicity, high stability, and suitable band structure. In this study, we took a brief glance at the synthesis techniques for CIS after providing a quick introduction to the fundamental semiconductor features, including the crystal and band structures of CIS. Then, we discussed the ways doping, heterojunction creation, p-n heterojunction, type-II heterojunction, and Z-scheme may be used to modify CIS's performance. Subsequently, the applications of CIS towards pollutant degradation, CO2 reduction, water splitting, and other toxic pollutants remediation are reviewed in detail. Finally, several remaining problems with CIS-based photocatalysts are highlighted, along with future potential for constructing more superior photocatalysts.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Catálisis , Luz , Tecnología
3.
Materials (Basel) ; 16(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687576

RESUMEN

In this work, palladium nanoparticles, supported by polyaminals (Pd@PAN-NA), were synthesized via a reverse double solvent approach and used as a nano catalyst. The thermogravimetric and the elemental analysis revealed that the catalyst had good dispersity and improved thermal stability. The catalytic activity of the prepared Pd@PAN-NA catalyst was studied for a methylene blue chemical reaction in the presence of NaBH4 as a reducing agent. The effect of the catalyst dose, pH, and dye initial concentration were examined to optimize the chemical reduction conditions. The prepared catalyst Pd@PAN-NA removed 99.8% of methylene blue organic dye, indicating its potential effect for treating waste and contaminated water.

4.
Life (Basel) ; 13(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37511826

RESUMEN

In Saudi Arabia, Cymbopogon schoenanthus (L.) has been traditionally used to treat a variety of diseases. This study aimed to investigate the crude methanolic extract of Cymbopogon schoenanthus (L.) phytochemical, chemical composition, and antibacterial activity. Phytochemical analysis revealed the presence of tannins, poly-tannins, steroids, alkaloids, essential oils, terpenoids, and flavonoids. The presence of functional groups such as -COOH, -OH, -C=O, and CH2 was revealed via FTIR spectroscopy. 13C and 1H NMR (nuclear magnetic resonance) were used to determine the types and number of protons (hydrogen atoms) and their electronic states. Using an agar well diffusion assay, methanolic extract of Cymbopogon schoenanthus (L.) inhibited the growth of some foodborne pathogenic bacteria in zones ranging from 8 to 25 mm in diameter. The minimum inhibitory concentration (MIC) for Staphylococcus aureus was 12.5 mg/mL, whereas it was 25 mg/mL for Bacillus cereus, Klebsiella pneumoniae, and Escherichia coli. The time-kill assay revealed a sharp decline in Staphylococcus aureus and Klebsiella pneumonia after 2 h at a concentration of 150 mg/mL, while Bacillus cereus and Escherichia coli showed a gradual decline with constant concentrations of 75 to 150 mg/mL. The minimum bactericide concentration (MBC) value for Bacillus cereus, Staphylococcus aureus, and Escherichia coli was 50 mg/mL, while it was 25 mg/mL for Klebsiella pneumoniae. In conclusion, our study revealed that Cymbopogon schoenanthus (L.) methanolic extract has a significant antibacterial effect, suggesting that it could be used to treat various foodborne pathogens.

5.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904327

RESUMEN

The evolution of green technology for the simple and ecological formation of silver nanoparticles (AgNPs) inspired the present work for simple and efficient detection of reducing sugars (RS) in foods. The proposed method relies on gelatin as the capping and stabilizing agent and the analyte (RS) as the reducing agent. This work may attract significant attention, especially in the industry, for testing the sugar content using gelatin-capped silver nanoparticles as it not only detects the sugar in food, but also determines the content (%), which could be an alternative technique to the conventionally used DNS colorimetric method. For this purpose, a certain amount of maltose was mixed with a gelatin-silver nitrate. Different conditions that may affect the color changes at 434 nm owing to the in situ formed AgNPs, such as gelatin-silver nitrate ratio, PH, time, and temperature, have been investigated. The 1:3 mg/mg ratio of gelatin-silver nitrate dissolved in 10 mL distilled water was most effective in color formation. The development of AgNPs color increases within 8-10 min at PH 8.5 as the selected optimum value and at the optimum temperature of 90 °C for the evolution of the gelatin-silver reagent's redox reaction. The gelatin-silver reagent showed a fast response (less than 10 min) with a detection limit for maltose at 46.67 µM. In addition, the selectivity of maltose was checked in the presence of starch and after its hydrolysis with α-amylase. Compared with the conventionally used dinitrosalicylic acid (DNS) colorimetric method, the proposed method could be applied to commercial fresh apple juice, watermelon, and honey to prove its viability for detecting RS in fruits; the total reducing sugar content was 287, 165, and 751 mg/g, respectively.

6.
Polymers (Basel) ; 15(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36987288

RESUMEN

Currently, polymer organic solar cells (POSCs) are widely utilized due to their significant application, such as low-cost power conversion efficiencies (PCEs). Therefore, we designed a series of photovoltaic materials (D1, D2, D3, D5 and D7) by the incorporation of selenophene units (n = 1-7) as π1-spacers by considering the importance of POSCs. Density functional theory (DFT) calculations were accomplished at MPW1PW91/6-311G (d, p) functional to explore the impact of additional selenophene units on the photovoltaic behavior of the above-mentioned compounds. A comparative analysis was conducted for designed compounds and reference compounds (D1). Reduction in energy gaps (∆E = 2.399 - 2.064 eV) with broader absorption wavelength (λmax = 655.480 - 728.376 nm) in chloroform along with larger charge transference rate was studied with the addition of selenophene units as compared to D1. A significantly higher exciton dissociation rate was studied as lower values of binding energy (Eb = 0.508 - 0.362 eV) were noted in derivatives than in the reference (Eb = 0.526 eV). Moreover, transition density matrix (TDM) and density of state (DOS) data also supported the efficient charge transition origination from HOMOs to LUMOs. Open circuit voltage (Voc) was also calculated for all the aforesaid compounds to check the efficiency, and significant results were seen (1.633-1.549 V). All the analyses supported our compounds as efficient POSCs materials with significant efficacy. These compounds might encourage the experimental researchers to synthesize them due to proficient photovoltaic materials.

7.
Int J Biol Macromol ; 233: 123539, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36740122

RESUMEN

An innovative approach for immobilizing α-amylase was used in this investigation. The acrylic fabric was first treated with hexamethylene diamine (HMDA) and then coated with copper ions that were later reduced to copper nanoparticles (CuNPs). The corresponding materials obtained, Cu(II)@HMDA-TA and CuNPs@HMDA-TA, were employed as carriers for α-amylase, respectively. The structural and morphological characteristics of the produced support matrices before and after immobilization were assessed using various techniques, including FTIR, SEM, EDX, TG/DTG, DSC, and zeta potential. The immobilized α-amylase exhibited the highest level of activity at pH 7.0, with immobilization yields observed for CuNPs@HMDA-TA (81.7 %) (60 unit/g support) followed by Cu(II)@HMDA-TA (71.7 %) (49 unit/g support) and 75 % and 61 % of activity yields, and 91.7 % and 85 % of immobilization efficiency, respectively. Meanwhile, biochemical characterizations of the activity of the soluble and immobilized enzymes were carried out and compared. Optimal temperature, pH, kinetics, storage stability, and reusability parameters were optimized for immobilized enzyme activity. The optimal pH and temperature were recorded as 6.0 and 50 °C for soluble α-amylase while the two forms of immobilized α-amylase exhibit a broad pH of 6.0-7.0 and optimal temperature at 60 °C. After recycling 15 times, the immobilized α-amylase on CuNPs@HMDA-TA and Cu(II)@HMDA-TA preserved 63 % and 52 % of their activities, respectively. The two forms of immobilized α-amylase displayed high stability when stored for 6 weeks and preserved 85 % and 76 % of their activities, respectively. Km values were calculated as 1.22, 1.39, and 1.84 mg/mL for soluble, immobilized enzymes on CuNPs@HMDA-TA, and Cu(II)@HMDA-TA, and Vmax values were calculated as 36.25, 29.68, and 21.57 µmol/mL/min, respectively. The total phenolic contents of maize kernels improved 1.4 ± 0.01 fold after treatment by two immobilized α-amylases.


Asunto(s)
Enzimas Inmovilizadas , Nanoestructuras , Enzimas Inmovilizadas/química , Estabilidad de Enzimas , alfa-Amilasas/química , Cobre , Concentración de Iones de Hidrógeno , Temperatura , Cinética
8.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36850293

RESUMEN

The potential of nanocomposite membranes (NCMs) prepared by the sodium alginate polymer and embedded with synthesized zeolitic imidazole framework-8 (ZIF-8) as fillers having microporous structure in the application of separation of gaseous mixture generated by the process of methane reforming was assessed. ZIF-8 crystals were created through hydrothermal synthesis, with sizes varying from 50 to 70 nm. NCMs were prepared with a 15% filler loading, i.e., synthesized ZIF-8. NCMs (ZIF-8) having H2 permeability of 28 Barrer and H2/CH4 selectivity of 125 outperformed neat polymer membranes in terms of separation performance at ambient temperature and 4 kg/cm2 pressure. The purity of H2 increased to as high as 95% among the measured values. The NCMs did not, however, outperform a neat polymer membrane in terms of their ability to separate mixtures of gases. Moreover, the combination of ZIF-8 as a filler with sodium alginate was new and had not been reported previously. As a result, it is worthwhile to investigate.

9.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768290

RESUMEN

Lipases are extensively utilized industrial biocatalysts that play an important role in various industrial and biotechnological applications. Herein, polyacrylonitrile (PAN) was treated with hexamethylene diamine (HMDA) and activated by glutaraldehyde, then utilized as a carrier support for Candida rugosa lipase. In this regard, the morphological structure of modified PAN before and after the immobilization process was evaluated using FTIR and SEM analyses. The immobilized lipase exhibited the highest activity at pH 8.0, with an immobilization yield of 81% and an activity of 91%. The optimal pH and temperature for free lipase were 7.5 and 40 °C, while the immobilized lipase exhibited its optimal activity at a pH of 8.0 and a temperature of 50 °C. After recycling 10 times, the immobilized lipase maintained 76% of its activity and, after 15 reuses, it preserved 61% of its activity. The lipase stability was significantly improved after immobilization, as it maintained 76% of its initial activity after 60 days of storage. The calculated Km values were 4.07 and 6.16 mM for free and immobilized lipase, and the Vmax values were 74 and 77 µmol/mL/min, respectively. These results demonstrated that synthetically modified PAN is appropriate for immobilizing enzymes and has the potential for commercial applications.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Estabilidad de Enzimas , Candida , Temperatura , Concentración de Iones de Hidrógeno
10.
Chemosphere ; 316: 137839, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640984

RESUMEN

In this study graphitic carbon nitride (g-C3N4 or GCN) and phosphorus doped graphitic carbon nitride (p-g-C3N4 or PCN) were prepared using facile thermal polycondensation method. Phosphorus doping was employed to preserve the non-metallic nature of GCN. The AgCl/PCN/Fe3O4 heterojunction was synthesized using a simple in-situ route. The photocatalytic performance of the GCN, PCN, Fe3O4 and AgCl/PCN/Fe3O4 was tested towards 2, 4-dimethylphenol (DMP) pollutant. The work explored improvement in physiochemical properties and reduction of band gap of GCN after P doping (through Tauc's plot method). Coupling with AgCl (silver halide) also enhanced photoinduced charge carriers' separation and migration ability due to apt band alignment among both AgCl and PCN photocatalysts which resulted in formation of direct Z-scheme charge transfer mechanism. Similarly, the incorporation of ferrimagnetic material i.e. Fe3O4 enhanced the generation of hydroxyl (•OH) radicals via photo-Fenton process and facilitated photocatalysts easy separation from the aqueous medium. Through PL and EIS analysis the enhanced charge separation and migration ability in AgCl/PCN/Fe3O4 nanocomposite was validated. The attained DMP degradation efficiency of photo-Fenton assisted AgCl/PCN/Fe3O4/H2O2 Z-scheme nanocomposite was much higher i.e. 99% compared to other photocatalysts within 60 min of visible light irradiation following pseudo-first-order kinetics. Electron paramagnetic resonance (EPR) and scavenging tests confirmed the substantial role of •OH and •O2- radicals in the photo-Fenton reaction. Furthermore, liquid chromatography-mass spectrometry (LC-MS) analysis detected the generated oxidative products and mineralization pathways associated with DMP degradation. The proposed direct Z-scheme charge transfer route presented efficient charge separation and migration ability in AgCl/PCN/Fe3O4 nanocomposite. Recycle ability of the fabricated AgCl/PCN/Fe3O4 photocatalyst was tested up to 5 cycles with 90% removal efficacy, confirming the excellent reusability and stability of AgCl/PCN/Fe3O4 photocatalyst.


Asunto(s)
Grafito , Peróxido de Hidrógeno , Grafito/química , Compuestos de Nitrógeno/química , Agua
11.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36145890

RESUMEN

The response to the high demand for decreasing the amount of CO2 in the atmosphere, a new polyaminal-based polymer network was designed and successfully prepared through one-pot polycondensation reaction of melamine and [2,2'-Bipyridine]-5,5'-dicarbaldehyde. The formation of the polymer structure was confirmed by FT-IR, solid-state 13C NMR, and powder-X-ray diffraction. The porous properties of the polymeric structure were confirmed by field-emission scanning electron microscope and N2 adsorption-desorption methods at 77 K. The prepared polymer can take up 1.02 mmol/g and 0.71 mmol/g CO2 at 273 K and 298 K, respectively, despite its relatively modest Brunauer-Emmett-Teller (BET) surface area (160.7 m2/g), due to the existence of superabundant polar groups on the pore surfaces.

12.
RSC Adv ; 12(7): 4209-4223, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35425453

RESUMEN

Herein, a series of non-fullerene-based substantial chromophores (FHD1-FHD6) with a D-π-A framework was designed from a synthesized non-fullerene compound (FH) via structural tailoring with various donor moieties. The FH and its designed derivatives were optimized with frequency analysis at the M06/6-311G (d,p) level to confirm their true minima on potential energy surfaces. These optimized geometries were utilized to perform further analyses, such as absorption, natural bonding orbital (NBO), frontier molecular orbital (FMO), and nonlinear orbital (NLO) analyses at the aforesaid level. Quantum chemical study revealed that all the designed chromophores exhibited a lower band gap than that of the parent molecule with the exception of FHD3. Furthermore, density of states (DOS) analysis supported the findings from the FMO study, and this agreement revealed that the efficient charge was transferred from the HOMO to the LUMO. The NBO investigations disclosed that all the compounds comprised donor moieties with positive charges and acceptors having negative charges. Interestingly, π-conjugated linkers were also found with positive charges, showing an effective donating property. These NBO findings explicated that FHD1-FHD6 exhibited an efficient push-pull mechanism. The λ max values of the designed chromophores were observed to be greater than the reference compound. The average polarizability 〈α〉, first hyperpolarizability (ß tot), and second hyperpolarizability 〈γ〉 values of FHD2 were found to be 2.170 × 10-22, 3.150 × 10-27, and 4.275 × 10-32 esu, respectively, while all the other derivatives had been reported in the relevant range. Efficient NLO data revealed that FH-based derivatives may contribute significantly toward NLO technology.

13.
ACS Omega ; 7(14): 11631-11642, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35449988

RESUMEN

Fullerene-based organic compounds have been reported as useful materials with some limitations; nonetheless, fullerene-free compounds are primarily considered to be the most substantial materials for the development of modern technology. Therefore, in this study, a series of compounds (NFBC2-NFBC7) having an A-π-D architecture were designed for the first time from a synthesized nonfullerene (O-IDTBR) compound by changing different acceptor groups. The synthesized nonfullerene (O-IDTBR1) compound and its designed derivatives were optimized with frequency analyses at the M06/6-311G(d,p) level. These optimized structures were further characterized by different quantum chemical approaches. The study required that the designed compounds possess a low energy gap in comparison to that of O-IDTBR1 (2.385 eV). Moreover, density of state (DOS) calculations supported the FMO analysis and displayed charge transfers from the HOMO to the LUMO in an effective manner. The λmax values of the investigated chromophores were observed to be greater than that of the reference compound. Amazingly, the highest amplitude of linear polarizability ⟨α⟩ and first (ßtot) and second hyperpolarizability values were achieved by NFBC6 at 1956.433, 2155888.013, and 7.868 × 108 au, respectively, among all other derivatives. Effective NLO findings revealed that nonfullerene-based derivatives may contribute significantly to NLO technology.

14.
Gels ; 8(4)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35448135

RESUMEN

Surfactants are ubiquitous materials that are used in diverse formulations of various products. For instance, they improve the formulation of gel by improving its wetting and rheological properties. Here, we describe the effects of anionic surfactants on an anesthetic drug, tetracaine hydrochloride (TCH), in NaCl solution with tensiometry and UV-visible techniques. Various micellar, interfacial, and thermodynamic parameters were estimated. The outputs were examined by using different theoretical models to attain a profound knowledge of drug-surfactant mixtures. The presence of attractive interactions among drug and surfactant monomers (synergism) in mixed micelle was inferred. However, it was found that sodium dodecyl sulfate (SDS) showed greater interactions with the drug in comparison to sodium lauryl sarcosine (SLS). The binding of the drug with surfactants was monitored with a spectroscopic technique (UV-visible spectra). The results of this study could help optimize the compositions of these mixed aggregates and find the synergism between monomers of different used amphiphiles.

15.
Polymers (Basel) ; 14(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35160625

RESUMEN

This work aimed to investigate the degradation performance of natural cellulose acetate (CA) membranes filled with ZnO nanostructures. Photocatalytic degradation of reactive toxic dye methylene blue (MB) was studied as a model reaction using UV light. A CA membrane was previously casted and fabricated through the phase inversion processes and laboratory-synthesized ZnO microparticles as filler. The prepared membrane was characterized for pore size, ultrafiltration (UF) performance, porosity, morphology using scanning electron micrographs (SEM), water contact angle and catalytic degradation of MB. The prepared membrane shows a significant amount of photocatalytic oxidation under UV. The photocatalytic results under UV-light radiation in CA filled with ZnO nanoparticles (CA/ZnO) demonstrated faster and more efficient MB degradation, resulting in more than 30% of initial concentration. The results also revealed how the CA/ZnO combination effectively improves the membrane's photocatalytic activity toward methylene blue (MB), showing that the degradation process of dye solutions to UV light is chemically and physically stable and cost-effective. This photocatalytic activity toward MB of the cellulose acetate membranes has the potential to make these membranes serious competitors for removing textile dye and other pollutants from aqueous solutions. Hence, polymer-ZnO composite membranes were considered a valuable and attractive topic in membrane technology.

16.
Gels ; 8(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35200509

RESUMEN

In this approach, tensiometry and UV-visible techniques are used to determine the effect of cationic gemini and conventional surfactants on tetracaine hydrochloride (TCH), an anesthetic drug. We have estimated micellar, interfacial, and energetic constraints. To gain a deep understanding of their mixed association behavior, the outputs were examined using different theoretical models. The critical micelle concentration for single and mixed amphiphiles was estimated. The cmc values of mixed amphiphiles were found between the individual amphiphiles due to strong attractive interaction (synergism) between the components after mixing. The non-ideal behavior of mixtures was confirmed by the larger values of ideal cmc than the experimental cmc values. The negative values of interaction parameter (ß) and values of activity coefficients less than unity indicate strong synergistic interaction between drug and surfactant. The stability of the mixed systems is demonstrated by the negative Gibbs free energy of micellization and excess free energy of micellization. In contrast to a single chain surfactant, a double chain surfactant (gemini) exhibits better interactions with the drug. Spectral measurements (UV-visible spectra) were used to monitor the binding of the drug with surfactant (conventional as well as gemini). Studying these mixed aggregates could help to optimize their compositions and find synergistic properties between TCH monomers and surfactants.

17.
Polymers (Basel) ; 14(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35012026

RESUMEN

The casting and preparation of ultrafiltration ZnO modified cellulose acetate membrane (CA/ZnO) were investigated in this work. CA membranes were fabricated by phase inversion using dimethylformamide (DMF) as a solvent and ZnO as nanostructures materials. Ultrafiltration (UF) performance, mechanical stability, morphology, contact angle, and porosity were evaluated on both CA- and ZnO-modified CA samples. Scanning electron microscopy (SEM) was used to determine the morphology of the membranes, showing different pore sizes either on rough surfaces and cross-sections of the samples, an asymmetric structure and ultra-scale pores with an average pore radius 0.0261 to 0.045 µm. Contact angle measurements showed the highest hydrophobicity values for the samples with no ZnO addition, ranging between 48° and 82.7° on their airside. The permeability values decreased with the increasing CA concentration in the casting solution, as expected; however, ZnO-modified membranes produced lower flux than the pure CA ones. Nevertheless, ZnO modified CA membranes have higher surface pore size, pore density and porosity, and improved surface hydrophilicity compared with pure CA membranes. The results indicated that the incorporated nano-ZnO tends to limit the packing of the polymer chains onto the membrane structure while showing antifouling properties leading to better hydrophilicity and permeation with consistent UF applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA