Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Manage ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478071

RESUMEN

In urbanized areas, rivers and riparian ecosystems are often the only ecological corridors available for wildlife movement. There, riverbanks are often stabilised by civil engineering structures (dykes, riprap). This can lead to habitat degradation and loss of landscape connectivity. Fascines (willow bundles tied together) could be an alternative to riprap, since they maintain the quality of the natural ecosystems by using native vegetal species instead of rocks, but their potential positive impact needs to be assessed. We proposed a landscape-scale decision-making method for river managers who want to restore banks by transforming riprap into fascines to improve landscape connectivity. We applied our methodology to a case study involving a 25 km-stretch of the Arve River, France. We selected four target vertebrate species based on biological traits to cover a wide range of dispersal capacities. For each species, we used landscape graphs to assess habitat connectivity under different contrasted riverbank scenarios. Scenarios included replacing all-natural banks with ripraps or replacing all ripraps with fascines. In addition, we systematically tested the effect of replacing individual 100 or 500 m sections of ripraps by fascines, to locate where riverbank restoration would maximize connectivity gain. The four species selected responded very differently to the scenarios (up to +14% and +46% change in Probability of Connectivity for common toads and Eurasian beavers, respectively, 0% for common sandpipers and barred grass snakes). The restoration of specific riverbank sections could result in important gains in PC (up to +33% for one single section for one species) but no section maximized connectivity gain for all the target species.

2.
Sci Data ; 7(1): 386, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177529

RESUMEN

Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms' morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community.


Asunto(s)
Distribución Animal , Organismos Acuáticos , Invertebrados , Animales , Conservación de los Recursos Naturales , Ecología , Monitoreo del Ambiente , Europa (Continente)
3.
Ecol Lett ; 19(5): 519-27, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26931804

RESUMEN

Although climate warming has been widely demonstrated to induce shifts in the timing of many biological events, the phenological consequences of other prominent global change drivers remain largely unknown. Here, we investigated the effects of biological invasions on the seasonality of leaf litter decomposition, a crucial freshwater ecosystem function. Decomposition rates were quantified in 18 temperate shallow lakes distributed along a gradient of crayfish invasion and a temperature-based model was constructed to predict yearly patterns of decomposition. We found that, through direct detritus consumption, omnivorous invasive crayfish accelerated decomposition rates up to fivefold in spring, enhancing temperature dependence of the process and shortening the period of major detritus availability in the ecosystem by up to 39 days (95% CI: 15-61). The fact that our estimates are an order of magnitude higher than any previously reported climate-driven phenological shifts indicates that some powerful drivers of phenological change have been largely overlooked.


Asunto(s)
Astacoidea/fisiología , Ecosistema , Especies Introducidas , Modelos Biológicos , Animales , Calentamiento Global , Hojas de la Planta/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...