Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 10489, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380735

RESUMEN

Globally, COVID-19 affected radiopharmaceutical laboratories. This study sought to determine the economic, service, and research impacts of COVID-19 on radiopharmacy. This online survey was conducted with the participation of employees from nuclear medicine and radiopharmaceutical companies. The socioeconomic status of the individuals was collected. The study was participated by 145 medical professionals from 25 different countries. From this work, it is evident that 2-deoxy-2-[18F]fluoro-D-glucose (2-[18F]FDG), and 99mTc-labeled macro aggregated albumin 99mTc-MAA were necessary radiopharmaceuticals used by 57% (83/145and 34% (49/145;) respondents, respectively for determining how COVID infections affect a patient's body. The normal scheduling procedure for the radiopharmacy laboratory was reduced by more than half (65%; 94/145). In COVID-19, 70% (102/145) of respondents followed the regulations established by the local departments. Throughout the pandemic, there was a 97% (141/145) decrease in all staffing recruitment efforts. The field of nuclear medicine research, as well as the radiopharmaceutical industry, were both adversely affected by COVID-19.


Asunto(s)
COVID-19 , Medicina Nuclear , Humanos , Radiofármacos , COVID-19/epidemiología , Cintigrafía , Fluorodesoxiglucosa F18
2.
BMC Biol ; 19(1): 66, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832485

RESUMEN

BACKGROUND: ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. RESULTS: Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect. CONCLUSIONS: We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.


Asunto(s)
Membrana Celular/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Polimerizacion
4.
Nat Commun ; 11(1): 2663, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471988

RESUMEN

Endosomal sorting complexes for transport-III (ESCRT-III) assemble in vivo onto membranes with negative Gaussian curvature. How membrane shape influences ESCRT-III polymerization and how ESCRT-III shapes membranes is yet unclear. Human core ESCRT-III proteins, CHMP4B, CHMP2A, CHMP2B and CHMP3 are used to address this issue in vitro by combining membrane nanotube pulling experiments, cryo-electron tomography and AFM. We show that CHMP4B filaments preferentially bind to flat membranes or to tubes with positive mean curvature. Both CHMP2B and CHMP2A/CHMP3 assemble on positively curved membrane tubes. Combinations of CHMP4B/CHMP2B and CHMP4B/CHMP2A/CHMP3 are recruited to the neck of pulled membrane tubes and reshape vesicles into helical "corkscrew-like" membrane tubes. Sub-tomogram averaging reveals that the ESCRT-III filaments assemble parallel and locally perpendicular to the tube axis, highlighting the mechanical stresses imposed by ESCRT-III. Our results underline the versatile membrane remodeling activity of ESCRT-III that may be a general feature required for cellular membrane remodeling processes.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membranas Artificiales , Estrés Mecánico , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Fenómenos Bioquímicos , Microscopía por Crioelectrón , Humanos , Nanotubos , Polimerizacion , Unión Proteica/fisiología , Multimerización de Proteína , ATPasas de Translocación de Protón Vacuolares/metabolismo
5.
Bio Protoc ; 9(13): e3294, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654807

RESUMEN

In vitro investigation of the interaction between proteins and positively curved membranes can be performed using a classic nanotube pulling method. However, characterizing protein interaction with negatively curved membranes still represents a formidable challenge. Here, we describe our recently developed approach based on laser-triggered Giant Unilamellar Vesicles (GUVs) fusion. Our protocol allows sequential addition of proteins to a negatively curved membrane, while at the same time controlling the buffer composition, lipid composition and membrane tension. Moreover, this method does not require a step of protein detachment, greatly simplifying the process of protein encapsulation over existing methods.

6.
Cytoskeleton (Hoboken) ; 76(1): 92-103, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30070077

RESUMEN

Septins constitute a novel class of cytoskeletal proteins. Budding yeast septins self-assemble into non-polar filaments bound to the inner plasma membrane through specific interactions with l-α-phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Biomimetic in vitro assays using giant unilamellar vesicles (GUVs) are relevant tools to dissect and reveal insights in proteins-lipids interactions, membrane mechanics and curvature sensitivity. GUVs doped with PI(4,5)P2 are challenging to prepare. This report is dedicated to optimize the incorporation of PI(4,5)P2 lipids into GUVs by probing the proteins-PI(4,5)P2 GUVs interactions. We show that the interaction between budding yeast septins and PI(4,5)P2 is more specific than using usual reporters (phospholipase Cδ1). Septins have thus been chosen as reporters to probe the proper incorporation of PI(4,5)P2 into giant vesicles. We have shown that electro-formation on platinum wires is the most appropriate method to achieve an optimal septin-lipid interaction resulting from an optimal PI(4,5)P2 incorporation for which, we have optimized the growth conditions. Finally, we have shown that PI(4,5)P2 GUVs have to be used within a few hours after their preparation. Indeed, over time, PI(4,5)P2 is expelled from the GUV membrane and the PI(4,5)P2 concentration in the bilayer decreases.


Asunto(s)
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Liposomas Unilamelares/metabolismo , Cromatografía Liquida , Espectrometría de Masas
7.
J Cell Sci ; 132(4)2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29967034

RESUMEN

Endosomal sorting complexes required for transport (ESCRT)-III family proteins catalyze membrane remodeling processes that stabilize and constrict membrane structures. It has been proposed that stable ESCRT-III complexes containing CHMP2B could establish diffusion barriers at the post-synaptic spine neck. In order to better understand this process, we developed a novel method based on fusion of giant unilamellar vesicles to reconstitute ESCRT-III proteins inside GUVs, from which membrane nanotubes are pulled. The new assay ensures that ESCRT-III proteins polymerize only when they become exposed to physiologically relevant membrane topology mimicking the complex geometry of post-synaptic spines. We establish that CHMP2B, both full-length and with a C-terminal deletion (ΔC), preferentially binds to membranes containing phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Moreover, we show that CHMP2B preferentially accumulates at the neck of membrane nanotubes, and provide evidence that CHMP2B-ΔC prevents the diffusion of PI(4,5)P2 lipids and membrane-bound proteins across the tube neck. This indicates that CHMP2B polymers formed at a membrane neck may function as a diffusion barrier, highlighting a potential important function of CHMP2B in maintaining synaptic spine structures.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/metabolismo , Liposomas Unilamelares/metabolismo , Emparejamiento Cromosómico/fisiología , Difusión , Escherichia coli , Proteínas del Tejido Nervioso/metabolismo , Columna Vertebral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...