Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cureus ; 15(4): e38090, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37252523

RESUMEN

BACKGROUND: Biofilm deposit on the composite restoration is a common phenomenon and bacterial growth follows the deposition. The study aims to evaluate Streptococcus mutans (S. mutans) early biofilm formation on the surfaces of various dental composite resins by using the real-time quantitative polymerase chain reaction (qPCR) technique. MATERIALS AND METHODS: Thirty-two discs, where eight discs were in each group of Filtek Supreme Ultra (FSU; 3M, St. Paul, MN), Clearfil AP-X (APX; Kuraray Noritake Dental Inc., Tokyo, Japan), Beautifil II (BE2; Shofu, Inc., Kyoto, Japan), and Estelite Sigma Quick (ESQ; Tokuyama Dental, Tokyo, Japan), were fabricated and subjected to S. mutans biofilm formation in an oral biofilm reactor for 12 hours. Contact angles (CA) were measured on the freshly fabricated specimen. The attached biofilms underwent fluorescent microscopy (FM). S. mutans from biofilms were analyzed using a qPCR technique. Surface roughness (Sa) measurements were taken before and after biofilm formation. Scanning electron microscopy (SEM), including energy dispersive X-ray spectrometer (EDS) analysis, was also performed for detecting relative elements on biofilms. RESULTS: The study showed that FSU demonstrated the lowest CA while APX presented the highest values. FM revealed that condensed biofilm clusters were most on FSU. The qPCR results indicated the highest S. mutans DNA copies in the biofilm were on FSU while BE2 was the lowest (p < 0.05). Sa test signified that APX was significantly the lowest among all materials while FSU was the highest (p < 0.05). SEM displayed areas with apparently glucan-free S. mutans more on BE2 compared to APX and ESQ, while FSU had the least. Small white particles detected predominantly on the biofilms of BE2 appeared to be Si, Al, and F extruded from the resin. CONCLUSION: Differences in early biofilm formation onto various composite resins are dependent on the differences in material compositions and their surface properties. BE2 showed the lowest quantity of biofilm accumulation compared to other resin composites (APX, ESQ, and FSU). This could be attributed to BE2 proprieties as a giomer and fluoride content.

2.
Dent Mater J ; 38(2): 233-240, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-30449829

RESUMEN

The repair microshear bond strengths (µSBSs) to resin matrices in 4 different cured-composites after water storage (0, 60 s, 1 week, 1 month) were evaluated. Three different adhesive application methods to the cured-composites were performed; (1) none, (2) onestep self-etch adhesive application, and (3) one-step self-etch adhesive application with a silane coupling agent. Degree of conversion (DC) of the composite discs was determined using ATR/FT-IR with a time-based spectrum analysis. Initially, the amount of un-reacted resin monomers in the repaired cured-composite contributed to the bonding performance of newly-filled uncured-composite to resin matrix of the cured-composite. Adhesive application could not improve their repair µSBS. After 1-month of water-storage, the repair µSBS was dependent on material, which either reduced or did not and was not influenced by their amount of un-reacted resin monomers. When repairing aged composite resin, the appropriate adhesive application procedures were different among resin composites.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos de Resina , Resinas Compuestas , Ensayo de Materiales , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Resistencia a la Tracción , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...