Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430450

RESUMEN

The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.


Asunto(s)
Amiloidosis , COVID-19 , Enfermedades Neurodegenerativas , Humanos , Agregado de Proteínas , Pandemias , Amiloide/metabolismo , Enfermedades Neurodegenerativas/metabolismo
2.
Cells ; 10(9)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34572066

RESUMEN

Fibroblast growth factors (FGFs) are cell-signaling proteins with diverse functions in cell development, repair, and metabolism. The human FGF family consists of 22 structurally related members, which can be classified into three separate groups based on their action of mechanisms, namely: intracrine, paracrine/autocrine, and endocrine FGF subfamilies. FGF19, FGF21, and FGF23 belong to the hormone-like/endocrine FGF subfamily. These endocrine FGFs are mainly associated with the regulation of cell metabolic activities such as homeostasis of lipids, glucose, energy, bile acids, and minerals (phosphate/active vitamin D). Endocrine FGFs function through a unique protein family called klotho. Two members of this family, α-klotho, or ß-klotho, act as main cofactors which can scaffold to tether FGF19/21/23 to their receptor(s) (FGFRs) to form an active complex. There are ongoing studies pertaining to the structure and mechanism of these individual ternary complexes. These studies aim to provide potential insights into the physiological and pathophysiological roles and therapeutic strategies for metabolic diseases. Herein, we provide a comprehensive review of the history, structure-function relationship(s), downstream signaling, physiological roles, and future perspectives on endocrine FGFs.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis , Enfermedades Metabólicas/fisiopatología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Factor-23 de Crecimiento de Fibroblastos , Humanos , Fosforilación , Transducción de Señal
3.
Curr Drug Targets ; 22(2): 214-240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33045958

RESUMEN

BACKGROUND: The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT. Dysregulation of the FGF/FGFR signaling occurs frequently in cancer due to gene amplification, FGF activating mutations, chromosomal rearrangements, integration, and oncogenic fusions. Aberrant FGFR signaling also affects organogenesis, embryonic development, tissue homeostasis, and has been associated with cell proliferation, angiogenesis, cancer, and other pathophysiological changes. OBJECTIVE: This comprehensive review will discuss the biology, chemistry, and functions of FGFs, and its current applications toward wound healing, diabetes, repair and regeneration of tissues, and fatty liver diseases. In addition, specific aberrations in FGFR signaling and drugs that target FGFR and aid in mitigating various disorders, such as cancer, are also discussed in detail. CONCLUSION: Inhibitors of FGFR signaling are promising drugs in the treatment of several types of cancers. The clinical benefits of FGF/FGFR targeting therapies are impeded due to the activation of other RTK signaling mechanisms or due to the mutations that abolish the drug inhibitory activity on FGFR. Thus, the development of drugs with a different mechanism of action for FGF/FGFR targeting therapies is the recent focus of several preclinical and clinical studies.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Neoplasias , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/fisiología , Humanos , Neoplasias/tratamiento farmacológico , Neovascularización Patológica , Fosfatidilinositol 3-Quinasas , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA