Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(31): 44374-44384, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949732

RESUMEN

The presence of phenazopyridine in water is an environmental problem that can cause damage to human health and the environment. However, few studies have reported the adsorption of this emerging contaminant from aqueous matrices. Furthermore, existing research explored only conventional modeling to describe the adsorption phenomenon without understanding the behavior at the molecular level. Herein, the statistical physical modeling of phenazopyridine adsorption into graphene oxide is reported. Steric, energetic, and thermodynamic interpretations were used to describe the phenomenon that controls drug adsorption. The equilibrium data were fitted by mono, double, and multi-layer models, considering factors such as the numbers of phenazopyridine molecules by adsorption sites, density of receptor sites, and half saturation concentration. Furthermore, the statistical physical approach also calculated the thermodynamic parameters (free enthalpy, internal energy, Gibbs free energy, and entropy). The maximum adsorption capacity at the equilibrium was reached at 298 K (510.94 mg g-1). The results showed the physical meaning of adsorption, indicating that the adsorption occurs in multiple layers. The temperature affected the density of receptor sites and half saturation concentration. At the same time, the adsorbed species assumes different positions on the adsorbent surface as a function of the increase in the temperature. Meanwhile, the thermodynamic functions revealed increased entropy with the temperature and the equilibrium concentration.


Asunto(s)
Nanoestructuras , Termodinámica , Adsorción , Nanoestructuras/química , Analgésicos/química , Grafito/química , Contaminantes Químicos del Agua/química , Carbono/química
2.
Environ Sci Pollut Res Int ; 31(30): 42889-42901, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884933

RESUMEN

Naphthenic acids (NA) are organic compounds commonly found in crude oil and produced water, known for their recalcitrance and toxicity. This study introduces a new adsorbent, a polymer derived from spent coffee grounds (SCGs), through a straightforward cross-linking method for removing cyclohexane carboxylic acid as representative NA. The adsorption kinetics followed a pseudo-second-order model for the data (0.007 g min-1 mg-1), while the equilibrium data fitted the Sips model ( q m = 140.55 mg g-1). The process's thermodynamics indicated that the target NA's adsorption was spontaneous and exothermic. The localized sterical and energetic aspects were investigated through statistical physical modeling, which corroborated that the adsorption occurred indeed in monolayer, as suggested by the Sips model, but revealed the contribution of two energies per site ( n 1 ; n 2 ). The number of molecules adsorbed per site ( n ) was highly influenced by the temperature as n 1 decreased with increasing temperature and n 2 increased. These results were experimentally demonstrated within the pH range between 4 and 6, where both C6H11COO-(aq.) and C6H11COOH(aq.) species coexisted and were adsorbed by different energy sites. The polymer produced was naturally porous and amorphous, with a low surface area of 20 to 30 m2 g-1 that presented more energetically accessible sites than other adsorbents with much higher surface areas. Thus, this study shows that the relation between surface area and high adsorption efficiency depends on the compatibility between the energetic states of the receptor sites, the speciation of the adsorbate molecules, and the temperature range studied.


Asunto(s)
Ácidos Carboxílicos , Café , Polímeros , Adsorción , Café/química , Ácidos Carboxílicos/química , Polímeros/química , Cinética , Ciclohexanos/química , Contaminantes Químicos del Agua/química , Termodinámica
3.
Environ Sci Pollut Res Int ; 31(13): 19294-19303, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361100

RESUMEN

In this work, the adsorption of nickel ions from a real effluent from a metal-mechanic industry was investigated in a fixed-bed column using biochar. Biochar was prepared from winemaking residues originating from the Beifiur® composting process. The use of wine industry residues as precursor materials for biochar production is established in biomass residue valorization using the existing logistics and the lowest possible number of manipulations and pre-treatments. The results found in the work showed that the optimal conditions for nickel adsorption in fixed-bed columns were bed height (Z) of 7 cm, initial nickel concentration (C0) of 1.5 mg L-1, and flow rate (Q) of 18 mL min-1. In this condition, the maximum adsorption capacity of the column was 0.452 mg g-1, the mass transfer zone (Zm) was 3.3 cm, the treated effluent volume (Veff) was 9.72 L, and the nickel removal (R) was 92.71%. The Yoon-Nelson and BDST dynamic models were suitable to represent the breakthrough curves of nickel adsorption. Finally, the fixed-bed column adsorption using biochar from winemaking residues proved to be a promising alternative for nickel removal from real industrial effluents.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Níquel/química , Purificación del Agua/métodos , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/análisis
4.
Int J Biol Macromol ; 257(Pt 2): 128726, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092113

RESUMEN

In this work, an adsorption phenomenon putatively involved in the olfactory sense of phenylacetic acid, 4-chlorophenylacetic acid, and 4-methoxyphenylacetic acid pheromones in the Zebrafish olfactory receptor ORA1 was a helpful mechanism in interpreting and characterizing the olfaction process at a molecular level. Hence, the experimental dose-olfactory response curves were fitted by applying the one-layer adsorption model with a single energy (1LM1E). On one hand, the different parameters introduced in the selected model were used to microscopically study the three olfactory systems. Indeed, the fitting results showed that phenylacetic acid displayed the greatest maximum olfactory response at saturation, due to the effect of functional groups at the R4 position. The three pheromones were docked via a non-parallel orientation and the adsorption process was a multi-molecular mechanism. The sizes of different binding pockets of ORA1 were determined through the estimation of the olfactory receptor site size distributions (stereographic characterization). The estimated adsorption energies, ranging from 17.340 to 21.332 kJ/mol, can be used to describe the energetic interactions between the studied pheromones and the Zebrafish ORA1 binding pockets. The spectrums of the adsorption energy distributions of phenylacetic acid, 4-chlorophenylacetic acid, and 4-methoxyphenylacetic acid, which were spread out from 10 to 32.5 kJ/mol, 5 to 30 kJ/mol, and 10 to 32.5 kJ/mol, respectively, was determined to estimate the corresponding olfactory bands (energetic characterization). On the other hand, three thermodynamic functions were estimated in order to macroscopically study the three olfactory systems.


Asunto(s)
Fenilacetatos , Receptores Odorantes , Animales , Receptores Odorantes/metabolismo , Pez Cebra/metabolismo , Feromonas , Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA