Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Med Oncol ; 41(5): 117, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630325

RESUMEN

Among the most prevalent forms of cancer are breast, lung, colon-rectum, and prostate cancers, and breast cancer is a major global health challenge, contributing to 2.26 million cases with approximately 685,000 deaths worldwide in 2020 alone, typically beginning in the milk ducts or lobules that produce and transport milk during lactation and it is becoming challenging to treat as the tissues are developing resistance, which makes urgent calls for new multitargeted drugs. The multitargeted drug design provides a better solution, simultaneously targeting multiple pathways, even when the drug resists one, it remains effective for others. In this study, we included four crucial proteins that perform signalling, receptor, and regulatory action, namely- NUDIX Hydrolases, Dihydrofolate Reductase, HER2/neu Kinase and EGFR and performed multitargeted molecular docking studies against human-approved drugs using HTVS, SP and extra precise algorithms and filtered the poses with MM\GBSA, suggested a benzodiazepine derivative chlordiazepoxide, used as an anxiolytic agent, can be a multitargeted inhibitor with docking and MM\GBSA score ranging from - 4.628 to - 7.877 and - 18.59 to - 135.86 kcal/mol, respectively, and the most interacted residues were 6ARG, 6GLU, 3TRP, and 3VAL. The QikProp-based ADMET and DFT computations showed the suitability and stability of the drug candidate followed by 100 ns MD simulation in water and MMGBSA on trajectories, resulting in stable performance and many intermolecular interactions to make the complexes stable, which favours that chlordiazepoxide can be a multitargeted breast cancer inhibitor. However, experimental validation is needed before its use.


Asunto(s)
Neoplasias de la Mama , Femenino , Masculino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Clordiazepóxido , Simulación del Acoplamiento Molecular , Transducción de Señal , Benzodiazepinas , Factores de Transcripción
2.
Artículo en Inglés | MEDLINE | ID: mdl-38573532

RESUMEN

The microbial desalination cell (MDC) is a bio-electrochemical system that exhibits the ability to oxidize organic compounds, produce energy, and decrease the saline concentrations within the desalination chamber. The selective removal of ions from the desalination chamber is significantly influenced by the anion and cation exchange membranes. In this study, a three-chamber microbial desalination cell was developed to treat seawater using a synthesize Fe3O4 magnetite nanoparticle (MNP)-modified anode. The impact of different performance parameters, such as temperature, pH, and concentrations of NPs, has been investigated in order to assess the performance of three-chamber MDCs in terms of energy recovery and salt removal. The evaluation criteria of the system included multiple factors such as chemical oxygen demand (COD), Coulombic efficiency (CE), desalination efficiency, as well as system aspects including voltage generation and power density. The highest COD% removal efficiency was 74% at 37 °C, pH = 7, and 30 g/L salt concentration with an optimized NPs concentration of 2.0 mg/cm2 impregnated on anode. The maximum Coulombic efficiency was 10.3% with the maximum power density of 4.3 W/m3. The effect of the nanoparticle concentration impregnated on the anode was clarified by the primary factor of analysis. This research has revealed consistent patterns in the enhancement of voltage generation, COD, and Coulombic efficiencies when incorporating higher concentrations of nanoparticles on the anode at a certain point.

3.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517073

RESUMEN

Cervical cancer poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide and resulting in approximately 300,000 deaths yearly, predominantly caused by high-risk human papillomavirus strains (HPV), mainly types 16 and 18. The scenario poses the urgent need of the hour to develop effective treatment strategies that can address the complexity of cervical cancer and multitargeted inhibitor designing that holds promise as it can simultaneously target multiple proteins and pathways involved in its progression and have the potential to enhance treatment efficacy, reduce the likelihood of drug resistance. In this study, we have performed multitargeted molecular docking of FDA-approved drugs against cervical cancer replication and maintenance proteins- Xenopus kinesin-like protein-2 (3KND), cell division cycle protein-20 (4N14), MCM2-histone complex (4UUZ) and MCM6 Minichromosome maintenance (2KLQ) with HTVS, SP and XP algorithms and have obtained the docking and MM\GBSA score ranging from -8.492 to -5.189 Kcal/mol and -58.16 to -39.07 Kcal/mol. Further, the molecular interaction fingerprints identified ALA, THR, SER, ASN, LEU, and ILE were among the most interacted residues, leaning towards hydrophobic and polar amino acids. The pharmacokinetics and DFT of the compound have shown promising results. The complexes were simulated for 100 ns to study the stability by computing the deviation, fluctuations, and intermolecular interactions formed during the simulation. This study produced promising results, satisfying the criteria that Mitoxantrone 2HCl can be a multitargeted inhibitor against cervical cancer proteins-however, experimental validation is a must before human use.Communicated by Ramaswamy H. Sarma.

4.
J Infect Public Health ; 17(4): 579-587, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368646

RESUMEN

Dengue hemorrhagic fever (DHF) is a severe condition resulting from the dengue virus, with four serotypes known as DEN-1, DEN-2, DEN-3, and DEN-4. Genetic variations play a crucial role in influencing susceptibility to DHF. Therefore, this investigation conducted a meta-analysis to uncover genetic changes that might have remained undetected in individual studies due to small sample sizes or methodological differences. Among 2212 initially identified studies, 23 were deemed suitable for analysis based on PRISMA guidelines. Toll-like receptors (TLR) and CD209 showed significant association with DHF (odds ratios: TLR=0.56, CD209 =0.55), indicating protective effects. However, tumor necrosis factor (TNF) and human leukocyte antigen (HLA) did not exhibit a statistically significant relationship with DHF. This study emphasizes the relevance of TLR and CD209 in DHF susceptibility and resistance across diverse geographical locations.


Asunto(s)
Virus del Dengue , Dengue , Dengue Grave , Humanos , Dengue Grave/genética , Virus del Dengue/genética , Factor de Necrosis Tumoral alfa/genética , Serogrupo , Estudios de Casos y Controles , Dengue/genética
5.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38203761

RESUMEN

Lung cancer is a pervasive and challenging disease with limited treatment options, with global health challenges often present with complex molecular profiles necessitating the exploration of innovative therapeutic strategies. Single-target drugs have shown limited success due to the heterogeneity of this disease. Multitargeted drug designing is imperative to combat this complexity by simultaneously targeting multiple target proteins and pathways, which can enhance treatment efficacy and overcome resistance by addressing the dynamic nature of the disease and stopping tumour growth and spread. In this study, we performed the molecular docking studies of Drug Bank compounds with a multitargeted approach against crucial proteins of lung cancer such as heat shock protein 5 (BIP/GRP78) ATPase, myosin 9B RhoGAP, EYA2 phosphatase inhibitor, RSK4 N-terminal kinase, and collapsin response mediator protein-1 (CRMP-1) using HTVS, SP with XP algorithms, and poses were filtered using MM\GBSA which identified [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BenCarMethIn YlPro-Phosphonic Acid) (DB02504) as multitargeted drug candidate with docking and MM\GBSA score ranges from -5.83 to -10.66 and -7.56 to -50.14 Kcal/mol, respectively. Further, the pharmacokinetic and QM-based DFT studies have shown complete acceptance results, and interaction fingerprinting reveals that ILE, GLY, VAL, TYR, LEU, and GLN were among the most interacting residues. The 100 ns MD simulation in the SPC water model with NPT ensemble showed stable performance with deviation and fluctuations <2 Å with huge interactions, making it a promising multitargeted drug candidate; however, experimental studies are needed before use.


Asunto(s)
Neoplasias Pulmonares , Ácidos Fosforosos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Adenosina Trifosfatasas , Algoritmos , Chaperón BiP del Retículo Endoplásmico
6.
J Biomol Struct Dyn ; 42(7): 3295-3306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37279114

RESUMEN

MCM7 (Minichromosome Maintenance Complex Component 7) is a component of the DNA replication licensing factor, which controls DNA replication. The MCM7 protein is linked to tumor cell proliferation and has a function in the development of several human cancers. Several types of cancer may be treated by inhibiting the protein, as it is strongly produced throughout this process. Significantly, Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant use against cancer, is rapidly gaining traction as a valuable medical resource for the development of novel cancer therapies, including immunotherapy. Therefore, the goal of the research was to find small molecular therapeutic candidates against the MCM7 protein that may be used to treat human cancers. A computational-based virtual screening of 36,000 natural TCM libraries is carried out for this goal using a molecular docking and dynamic simulation technique. Thereby, ∼8 novel potent compounds i.e., ZINC85542762, ZINC95911541, ZINC85542617, ZINC85542646, ZINC85592446, ZINC85568676, ZINC85531303, and ZINC95914464 were successfully shortlisted, each having the capacity to penetrate the cell as potent inhibitors for MCM7 to curb this disorder. These selected compounds were found to have high binding affinities compared to the reference (AGS compound) i.e. < -11.0 kcal/mol. ADMET and pharmacological properties showed that none of these 8 compounds poses any toxic property (carcinogenicity) and have anti-metastatic, and anticancer activity. Additionally, MD simulations were run to assess the compounds' stability and dynamic behavior with the MCM7 complex for about 100 ns. Finally, ZINC95914464, ZINC95911541, ZINC85568676, ZINC85592446, ZINC85531303, and ZINC85542646 are identified as highly stable within the complex throughout the 100 ns simulations. Moreover, the results of binding free energy suggested that the selected virtual hits significantly bind to the MCM7 which implied these compounds may act as a potential MCM7 inhibitor. However, in vitro testing protocols are required to further support these results. Further, assessment through various lab-based trial methods can assist with deciding the action of the compound that will give options in contrast to human cancer immunotherapy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Medicina Tradicional China , Neoplasias , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de Ciclo Celular , Proliferación Celular , Neoplasias/tratamiento farmacológico
7.
J Biomol Struct Dyn ; 42(6): 2965-2975, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37184150

RESUMEN

Tropomyosin receptor kinase B (TrkB), also known as neurotrophic tyrosine kinase receptor type 2 (NTRK2), is a protein that belongs to the family of receptor tyrosine kinases (RTKs). NTRK2 plays a crucial role in regulating the development and maturation of the central nervous system (CNS) and peripheral nervous system (PNS). Elevated TrkB expression levels observed in different pathological conditions make it a potential target for therapeutic interventions against neurological disorders, including depression, anxiety, Alzheimer's disease, Parkinson's disease, and certain types of cancer. Targeting TrkB using small molecule inhibitors is a promising strategy for the treatment of a variety of neurological disorders. In this research, a systematic virtual screening was carried out on phytoconstituents found in the IMPPAT library to identify compounds potentially inhibiting TrkB. The retrieved compounds from the IMPPAT library were first filtered using Lipinski's rule of five. The compounds were then sorted based on their docking score and ligand efficiency. In addition, PAINS, ADMET, and PASS evaluations were carried out for selecting drug-like compounds. Finally, in interaction analysis, we found two phytoconstituents, Wedelolactone and 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid (DMCA), which possessed considerable docking scores and specificity on the TrkB ATP-binding pocket. The selected compounds were further assessed employing molecular dynamics (MD) simulations and essential dynamics. The results revealed that the elucidated compounds bind well with the TrkB binding pocket and lead to fewer conformations fluctuations. This study highlighted using phytoconstituents, Wedelolactone and DMCA as starting leads in developing novel TrkB inhibitors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias , Enfermedades del Sistema Nervioso , Humanos , Tropomiosina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
8.
Immunol Res ; 72(2): 242-259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37880483

RESUMEN

Millions of people's lives are being devastated by dengue virus (DENV), a severe tropical and subtropical illness spread by mosquitoes and other vectors. Dengue fever may be self-limiting like a common cold or can rapidly progress to catastrophic dengue hemorrhagic fever or dengue shock syndrome. With four distinct dengue serotypes (DENV1-4), each with the potential to contain antibody-boosting complicated mechanisms, developing a dengue vaccine has been an ambitious challenge. Here, we used a computational pan-vaccinomics-based vaccine design strategy (reverse vaccinology) for all 4 DENV serotypes acquired from different regions of the world to develop a new and safe vaccine against DENV. Consequently, only five mapped epitopes from all the 4 serotypes were shown to be extremely effective for the construction of multi-epitope vaccine constructs. The suggested vaccine construct V5 from eight vaccine models was thus classified as an antigenic, non-allergenic, and stable vaccine model. Moreover, molecular docking and molecular dynamics simulation was performed for the V5 vaccine candidate against the HLAs and TRL2 and 4 immunological receptors. Later, the vaccine sequence was transcribed into the cDNA to generate an expression vector for the Escherichia coli K12 strain. Our research suggests that this vaccine design (V5) has promising potential as a dengue vaccine. However, further experimental analysis into the vaccine's efficacy might be required for the V5 proper validation to combat all DENV serotypes.

9.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139037

RESUMEN

Cathepsin L (CTSL) expression is dysregulated in a variety of cancers. Extensive empirical evidence indicates their direct participation in cancer growth, angiogenic processes, metastatic dissemination, and the development of treatment resistance. Currently, no natural CTSL inhibitors are approved for clinical use. Consequently, the development of novel CTSL inhibition strategies is an urgent necessity. In this study, a combined machine learning (ML) and structure-based virtual screening strategy was employed to identify potential natural CTSL inhibitors. The random forest ML model was trained on IC50 values. The accuracy of the trained model was over 90%. Furthermore, we used this ML model to screen the Biopurify and Targetmol natural compound libraries, yielding 149 hits with prediction scores >0.6. These hits were subsequently selected for virtual screening using a structure-based approach, yielding 13 hits with higher binding affinity compared to the positive control (AZ12878478). Two of these hits, ZINC4097985 and ZINC4098355, have been shown to strongly bind CTSL proteins. In addition to drug-like properties, both compounds demonstrated high affinity, ligand efficiency, and specificity for the CTSL binding pocket. Furthermore, in molecular dynamics simulations spanning 200 ns, these compounds formed stable protein-ligand complexes. ZINC4097985 and ZINC4098355 can be considered promising candidates for CTSL inhibition after experimental validation, with the potential to provide therapeutic benefits in cancer management.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias , Humanos , Catepsina L/metabolismo , Ligandos , Detección Precoz del Cáncer , Neoplasias/tratamiento farmacológico , Simulación del Acoplamiento Molecular
10.
Thromb J ; 21(1): 115, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950286

RESUMEN

BACKGROUND: Alpha-thalassemia (α-thalassemia) is one of the most common monogenic diseases in Saudi Arabia and is associated with significant morbidity. Premarital testing programs in Saudi Arabia reduce the burden of hemoglobinopathy disorders, and ongoing monitoring is required. We aimed to explore the molecular nature of α-globin genes and identify the most common genotypes and regions with a high risk of α-thalassemia in Saudi Arabia. METHODS: This retrospective study was conducted between January 2021 and December 2022. Six hundred twenty-five samples from patients with microcytic hypochromic anemia in Saudi Arabia were analyzed using reverse dot blot hybridization (RDBH)-based multiplex-PCR, which screens for the known 21 mutations of α-globin genes. RESULTS: Seven mutations in the α-globin gene were identified in 88.96% (556) patients. The most frequent abnormality of a-globin genes was -α3.7 (62.3%), followed by α2IVS1(-5nt) (20.7%) and α2 polyA-1 (α2T.Saudi) (14.1%). Interestingly, α2 polyA-2 (α2T.Turkish) was identified in Saudi and presented with -MED, causing Haemoglobin H disease. The incidence of α-thalassemia in Saudi Arabia's cities showed significant differences (P = 0.004). Jeddah City had the highest percentage of cases (25%), followed by Makkah (23%), Taif (13.3%), and Al-Ahassa (12.4%). CONCLUSION: The study provides current knowledge about the molecular nature of α- thalassemia, highlights the common genotypes that could contribute to disease occurrence in the Saudi population, and sheds light on Saudi regions with a high incidence. It also recommends further studies in a larger population and with differently composed molecular assays to verify these findings.

11.
Curr Org Synth ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37779415

RESUMEN

Medical researchers have paid close attention to the green synthesis of oxazine and thiazine derivatives since they provided a lead molecule for the creation of numerous possible bioactive compounds. This review provides more information on green synthesis, which will be very helpful to researchers in creating the most effective, affordable, and clinically significant thiazine and oxazine derivatives that are anticipated to have strong pharmacological effects. This has resulted in the identification of several substances with a wide range of intriguing biological functions. This article's goal is to examine the numerous green chemical processes used to create oxazine and thiazine derivatives and their biological activity. We anticipate that researchers interested in oxazine and thiazine chemicals will find this material to be useful. We anticipate that medicinal chemists looking for new active medicinal components for drug discovery and advance progress will find this review of considerable interest.

12.
Front Genet ; 14: 1230998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900178

RESUMEN

Objective: Estrogen receptor breast cancer (BC) is characterized by the expression of estrogen receptors. It is the most common cancer among women, with an incidence rate of 2.26 million cases worldwide. The aim of this study was to identify differentially expressed genes and isoform switching between estrogen receptor positive and triple negative BC samples. Methods: The data were collected from ArrayExpress, followed by preprocessing and subsequent mapping from HISAT2. Read quantification was performed by StringTie, and then R package ballgown was used to perform differential expression analysis. Functional enrichment analysis was conducted using Enrichr, and then immune genes were shortlisted based on the ScType marker database. Isoform switch analysis was also performed using the IsoformSwitchAnalyzeR package. Results: A total of 9,771 differentially expressed genes were identified, of which 86 were upregulated and 117 were downregulated. Six genes were identified as mainly associated with estrogen receptor positive BC, while a novel set of ten genes were found which have not previously been reported in estrogen receptor positive BC. Furthermore, alternative splicing and subsequent isoform usage in the immune system related genes were determined. Conclusion: This study identified the differential usage of isoforms in the immune system related genes in cancer cells that suggest immunosuppression due to the dysregulation of CXCR chemokine receptor binding, iron ion binding, and cytokine activity.

13.
Prog Biophys Mol Biol ; 184: 13-31, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666284

RESUMEN

Chemical signal molecules are used by bacteria to interact with one another. Small hormone-like molecules known as autoinducers are produced, released, detected, and responded to during chemical communication. Quorum Sensing (QS) is the word for this procedure; it allows bacterial populations to communicate and coordinate group behavior. Several research has been conducted on using inhibitors to prevent QS and minimize the detrimental consequences. Through the enzymatic breakdown of the autoinducer component, by preventing the formation of autoinducers, or by blocking their reception by adding some compounds (inhibitors) that can mimic the autoinducers, a technique known as "quorum quenching" (QQ) disrupts microbial communication. Numerous techniques, including colorimetry, electrochemistry, bioluminescence, chemiluminescence, fluorescence, chromatography-mass spectroscopy, and many more, can be used to test QS/QQ. They all permit quantitative and qualitative measurements of QS/QQ molecules. The mechanism of QS and QQ, as well as the use of QQ in the prevention of biofilms, are all elaborated upon in this writing, along with the fundamental study of nanoparticle (NP)in QQ. Q.

14.
Med Chem ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37711126

RESUMEN

Pyridazinone analogs possess diverse types of pharmacological activities, such as anticancer, antimicrobial, anticonvulsant, analgesic, anti-inflammatory, antioxidant, antihypertensive, antisecretory, antiulcer, and other useful pharmacological activities. They also possess cyclooxygenase (COX) inhibitors, dipeptidyl peptidase inhibitors, phosphodiesterase inhibitors, glutamate transporter activators, adenosine receptor antagonists, serotonin receptors antagonists, lipooxygenase, cholinesterase, vasodilator, and anesthetics. Pyridazine rings are the essential structure for some marketed drugs, such as pimobendan, levosimendan as a cardiotonic drug, and emorfozan as an analgesic and anti-inflammatory (Non-steroidal anti-inflammatory drug) agent. So, researchers all over the world have paid attention to synthesizing various pyridazinone compounds mainly due to the ease of design and synthesis of different analogs and variables in the pharmacological responses. This review article focuses on the pharmacological activities of different pyridazine analogs.

15.
Biomedicines ; 11(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37626655

RESUMEN

Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.

16.
J Biomol Struct Dyn ; : 1-22, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37599459

RESUMEN

The recently identified monkeypox virus (MPXV or mpox) is a zoonotic orthopox virus that infects humans and causes diseases with traits like smallpox. The world health organization (WHO) estimates that 3-6% of MPXV cases result in death. As it might impact everyone globally, like COVID, and become the next pandemic, the cure for this disease is important for global public health. The high incidence and disease ratio of MPXV necessitates immediate efforts to design a unique vaccine candidate capable of addressing MPXV diseases. Here, we used a computational pan-genome-based vaccine design strategy for all currently reported 19 MPXV strains acquired from different regions of the world. Thus, this study's objective was to develop a new and safe vaccine candidate against MPXV by targeting the membrane CL5 protein; identified after the pangenome analysis. Proteomics and reverse vaccinology have covered up all of the MPXV epitopes that would usually stimulate robust host immune responses. Following this, only two mapped (MHC-I, MHC-II, and B-cell) epitopes were observed to be extremely effective that can be used in the construction of CL5 protein vaccine candidates. The suggested vaccine (V5) candidate from eight vaccine models was shown to be antigenic, non-allergenic, and stable (with 213 amino acids). The vaccine's candidate efficacy was evaluated by using many in silico methods to predict, improve, and validate its 3D structure. Molecular docking and molecular dynamics simulations further reveal that the proposed vaccine candidate ensemble has a high interaction energy with the HLAs and TRL2/4 immunological receptors under study. Later, the vaccine sequence was used to generate an expression vector for the E. coli K12 strain. Further study uncovers that V5 was highly immunogenic because it produced robust primary, secondary, and tertiary immune responses. Eventually, the use of computer-aided vaccine designing may significantly reduce costs and speed up the process of developing vaccines. Although, the results of this research are promising, however, more research (experimental; in vivo, and in vitro studies) is needed to verify the biological efficacy of the proposed vaccine against MPXV.Communicated by Ramaswamy H. Sarma.

17.
J Biomol Struct Dyn ; : 1-15, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578072

RESUMEN

A prevalent food-borne pathogen, Salmonella enterica serotypes Typhi, is responsible for gastrointestinal and systemic infections globally. Salmonella vaccines are the most effective, however, producing a broad-spectrum vaccine remains challenging due to Salmonella's many serotypes. Efforts are urgently required to develop a novel vaccine candidate that can tackle all S. Typhi strains because of their high resistance to multiple kinds of antibiotics (particularly the XDR H58 strain). In this work, we used a computational pangenome-based vaccine design technique on all available (n = 119) S. Typhi reference genomes and identified one TonB-dependent siderophore receptor (WP_001034967.1) as highly conserved and prospective vaccine candidates from the predicted core genome (n = 3,351). The applied pan-proteomics and Immunoinformatic approaches help in the identification of four epitopes that may trigger adequate host body immune responses. Furthermore, the proposed vaccine ensemble demonstrates a stable binding conformation with the examined immunological receptor (HLAs and TRL2/4) and has large interaction energy determined via molecular docking and molecular dynamics simulation techniques. Eventually, an expression vector for the Escherichia. coli K12 strain was constructed from the vaccine sequence. Additional analysis revealed that the vaccine may help to elicit strong immune responses for typhoid infections, however, experimental analysis is required to verify the vaccine's effectiveness based on these results. Moreover, the applied computer-assisted vaccine design may considerably decrease vaccine development costs and speed up the process. The study's findings are intriguing, but they must be evaluated in the experimental labs to confirm the developed vaccine's biological efficiency against XDR S. Typhi.Communicated by Ramaswamy H. Sarma.

18.
J Clin Med ; 12(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37568516

RESUMEN

Rett syndrome (RTT) is a rare disability causing female-oriented pediatric neurodevelopmental unmet medical need. RTT was recognized in 1966. However, over the past 56 years, the United States Food and Drug Administration (USFDA) has authorized no effective treatment for RTT. Recently, Trofinetide was approved by the USFDA on 10 March 2023 as the first RTT treatment. This article underlines the pharmaceutical advancement, patent literature, and prospects of Trofinetide. The data for this study were gathered from the PubMed database, authentic websites (Acadia Pharmaceuticals, Neuren Pharmaceuticals, and USFDA), and free patent databases. Trofinetide was first disclosed by Neuren Pharmaceuticals in 2000 as a methyl group containing analog of the naturally occurring neuroprotective tripeptide called glycine-proline-glutamate (GPE). The joint efforts of Acadia Pharmaceuticals and Neuren Pharmaceuticals have developed Trofinetide. The mechanism of action of Trofinetide is not yet well established. However, it is supposed to improve neuronal morphology and synaptic functioning. The patent literature revealed a handful of inventions related to Trofinetide, providing excellent and unexplored broad research possibilities with Trofinetide. The development of innovative Trofinetide-based molecules, combinations of Trofinetide, patient-compliant drug formulations, and precise MECP2-mutation-related personalized medicines are foreseeable. Trofinetide is in clinical trials for some neurodevelopmental disorders (NDDs), including treating Fragile X syndrome (FXS). It is expected that Trofinetide may be approved for treating FXS in the future. The USFDA-approval of Trofinetide is one of the important milestones for RTT therapy and is the beginning of a new era for the therapy of RTT, FXS, autism spectrum disorder (ASD), brain injury, stroke, and other NDDs.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37403393

RESUMEN

BACKGROUND: Due to the biological importance of the benzoxazole derivatives, some 1-(benzo[d]oxazol-2-yl)-3,5-diphenyl-formazans (4a-f) were synthesized and screened for in-silico studies and in-vitro antibacterial activity. METHODS: The benzo[d]oxazole-2-thiol (1) was prepared by reacting with 2-aminophenol and carbon disulfide in the presence of alcoholic potassium hydroxide. Then 2-hydrazinylbenzo[d]oxazole (2) was synthesized from the reaction of compound 1 with hydrazine hydrate in the presence of alcohol. Compound 2 was reacted with aromatic aldehydes to give Schiff base, 2-(2-benzylidene-hydrazinyl)benzo[d]oxazole derivatives (3a-f). The title compounds, formazan derivatives (4a-f), were prepared by a reaction of benzene diazonium chloride. All compounds were confirmed by their physical data, FTIR, 1H-NMR, and 13CNMR spectral data. All the prepared title compounds were screened for in-silico studies and in-vitro antibacterial activity on various microbial strains. RESULTS: Molecular docking against the 4URO receptor demonstrated that molecule 4c showed a maximum dock score of (-) 8.0 kcal/mol. MD simulation data reflected the stable ligand-receptor interaction. As per MM/PBSA analysis, the maximum free binding energy of (-) 58.831 kJ/mol was exhibited by 4c. DFT calculation data confirmed that most of the molecules were soft molecules with electrophilic nature. CONCLUSION: The synthesized molecules were validated using molecular docking, MD simulation, MMPBSA analysis, and DFT calculation. Among all the molecules, 4c showed maximum activity. The activity profile of the synthesized molecules against tested micro-organisms was found to be 4c>4b>4a>4e>4f>4d.

20.
Biomedicines ; 11(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37509664

RESUMEN

The monkeypox virus (MPXV) is an enveloped, double-stranded DNA virus belonging to the genus Orthopox viruses. In recent years, the virus has spread to countries where it was previously unknown, turning it into a worldwide emergency for public health. This study employs a structural-based drug design approach to identify potential inhibitors for the core cysteine proteinase of MPXV. During the simulations, the study identified two potential inhibitors, compound CHEMBL32926 and compound CHEMBL4861364, demonstrating strong binding affinities and drug-like properties. Their docking scores with the target protein were -10.7 and -10.9 kcal/mol, respectively. This study used ensemble-based protein-ligand docking to account for the binding site conformation variability. By examining how the identified inhibitors interact with the protein, this research sheds light on the workings of the inhibitors' mechanisms of action. Molecular dynamic simulations of protein-ligand complexes showed fluctuations from the initial docked pose, but they confirmed their binding throughout the simulation. The MMGBSA binding free energy calculations for CHEMBL32926 showed a binding free energy range of (-9.25 to -9.65) kcal/mol, while CHEMBL4861364 exhibited a range of (-41.66 to -31.47) kcal/mol. Later, analogues were searched for these compounds with 70% similarity criteria, and their IC50 was predicted using pre-trained machine learning models. This resulted in identifying two similar compounds for each hit with comparable binding affinity for cysteine proteinase. This study's structure-based drug design approach provides a promising strategy for identifying new drugs for treating MPXV infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...