Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Birth Defects Res ; 115(14): 1284-1293, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37140214

RESUMEN

OBJECTIVES: The objective of this study was to examine the fetal skeletons using both alizarin red stain and micro-computed tomography (CT) images; investigate differences, and to determine if the conclusions of the study were the same regardless of the examination method. METHODS: A candidate drug was given orally by gavage to pregnant New Zealand White rabbits on gestation day (GD) 7 to GD 19 (mating = GD 0) at doses of 0 (control), 0.02, 0.5, 5, and 15 mg/kg/day. Maternal toxicity was evident at ≥0.02 mg/kg/day. The 199 fetal skeletons (totaling 50,546 skeletal elements) obtained at cesarean delivery on GD29 were first stained with Alizarin Red S, then imaged by a Siemens Inveon micro-CT scanner. All fetal skeletons were examined by both methods, without knowledge of dose group, and the results were compared. RESULTS: In total, 33 types of skeletal abnormalities were identified. There was 99.8% concordance of results comparing stain to micro-CT. Ossification of the middle phalanx of the forepaw digit 5 showed the greatest difference between the two methods. CONCLUSION: Overall, micro-CT imaging is a realistic, and robust alternative to skeletal staining to examine fetal rabbit skeletons in developmental toxicity studies.


Asunto(s)
Huesos , Cesárea , Embarazo , Femenino , Conejos , Animales , Microtomografía por Rayos X/métodos , Huesos/diagnóstico por imagen , Coloración y Etiquetado
2.
Eur J Nucl Med Mol Imaging ; 50(3): 667-678, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305907

RESUMEN

PURPOSE: Sotrovimab (VIR-7831), a human IgG1κ monoclonal antibody (mAb), binds to a conserved epitope on the SARS-CoV-2 spike protein receptor binding domain (RBD). The Fc region of VIR-7831 contains an LS modification to promote neonatal Fc receptor (FcRn)-mediated recycling and extend its serum half-life. Here, we aimed to evaluate the impact of the LS modification on tissue biodistribution, by comparing VIR-7831 to its non-LS-modified equivalent, VIR-7831-WT, in cynomolgus monkeys. METHODS: 89Zr-based PET/CT imaging of VIR-7831 and VIR-7831-WT was performed up to 14 days post injection. All major organs were analyzed for absolute concentration as well as tissue:blood ratios, with the focus on the respiratory tract, and a physiologically based pharmacokinetics (PBPK) model was used to evaluate the tissue biodistribution kinetics. Radiomics features were also extracted from the PET images and SUV values. RESULTS: SUVmean uptake in the pulmonary bronchi for 89Zr-VIR-7831 was statistically higher than for 89Zr-VIR-7831-WT at days 6 (3.43 ± 0.55 and 2.59 ± 0.38, respectively) and 10 (2.66 ± 0.32 and 2.15 ± 0.18, respectively), while the reverse was observed in the liver at days 6 (5.14 ± 0.80 and 8.63 ± 0.89, respectively), 10 (4.52 ± 0.59 and 7.73 ± 0.66, respectively), and 14 (4.95 ± 0.65 and 7.94 ± 0.54, respectively). Though the calculated terminal half-life was 21.3 ± 3.0 days for VIR-7831 and 16.5 ± 1.1 days for VIR-7831-WT, no consistent differences were observed in the tissue:blood ratios between the antibodies except in the liver. While the lung:blood SUVmean uptake ratio for both mAbs was 0.25 on day 3, the PBPK model predicted the total lung tissue and the interstitial space to serum ratio to be 0.31 and 0.55, respectively. Radiomics analysis showed VIR-7831 had mean-centralized PET SUV distribution in the lung and liver, indicating more uniform uptake than VIR-7831-WT. CONCLUSION: The half-life extended VIR-7831 remained in circulation longer than VIR-7831-WT, consistent with enhanced FcRn binding, while the tissue:blood concentration ratios in most tissues for both drugs remained statistically indistinguishable throughout the course of the experiment. In the bronchiolar region, a higher concentration of 89Zr-VIR-7831 was detected. The data also allow unparalleled insight into tissue distribution and elimination kinetics of mAbs that can guide future biologic drug discovery efforts, while the residualizing nature of the 89Zr label sheds light on the sites of antibody catabolism.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Recién Nacido , Humanos , Distribución Tisular , Macaca fascicularis/metabolismo , SARS-CoV-2/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anticuerpos Monoclonales/metabolismo , Circonio
3.
Mol Imaging Biol ; 25(3): 528-540, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36266600

RESUMEN

PURPOSE: The presence and functional competence of intratumoral CD8+ T cells is often a barometer for successful immunotherapeutic responses in cancer. Despite this understanding and the extensive number of clinical-stage immunotherapies focused on potentiation (co-stimulation) or rescue (checkpoint blockade) of CD8+ T cell antitumor activity, dynamic biomarker strategies are often lacking. To help fill this gap, immuno-PET nuclear imaging has emerged as a powerful tool for in vivo molecular imaging of antibody targeting. Here, we took advantage of immuno-PET imaging using 89Zr-IAB42M1-14, anti-mouse CD8 minibody, to characterize CD8+ T-cell tumor infiltration dynamics following ICOS (inducible T-cell co-stimulator) agonist antibody treatment alone and in combination with PD-1 blocking antibody in a model of mammary carcinoma. PROCEDURES: Female BALB/c mice with established EMT6 tumors received 10 µg, IP of either IgG control antibodies, ICOS agonist monotherapy, or ICOS/PD-1 combination therapy on days 0, 3, 5, 7, 9, 10, or 14. Imaging was performed at 24 and 48 h post IV dose of 89Zr IAB42M1-14. In addition to 89Zr-IAB42M1-14 uptake in tumor and tumor-draining lymph node (TDLN), 3D radiomic features were extracted from PET/CT images to identify treatment effects. Imaging mass cytometry (IMC) and immunohistochemistry (IHC) was performed at end of study. RESULTS: 89Zr-IAB42M1-14 uptake in the tumor was observed by day 11 and was preceded by an increase in the TDLN as early as day 4. The spatial distribution of 89Zr-IAB42M1-14 was more uniform in the drug treated vs. control tumors, which had spatially distinct tracer uptake in the periphery relative to the core of the tumor. IMC analysis showed an increased percentage of cytotoxic T cells in the ICOS monotherapy and ICOS/PD-1 combination group compared to IgG controls. Additionally, temporal radiomics analysis demonstrated early predictiveness of imaging features. CONCLUSION: To our knowledge, this is the first detailed description of the use of a novel immune-PET imaging technique to assess the kinetics of CD8+ T-cell infiltration into tumor and lymphoid tissues following ICOS agonist and PD-1 blocking antibody therapy. By demonstrating the capacity for increased spatial and temporal resolution of CD8+ T-cell infiltration across tumors and lymphoid tissues, these observations underscore the widespread potential clinical utility of non-invasive PET imaging for T-cell-based immunotherapy in cancer.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ratones , Femenino , Linfocitos T CD8-positivos/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptor de Muerte Celular Programada 1 , Neoplasias/patología , Tomografía de Emisión de Positrones/métodos , Inmunoglobulina G , Línea Celular Tumoral , Proteína Coestimuladora de Linfocitos T Inducibles
4.
J Control Release ; 352: 199-210, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36084816

RESUMEN

Liposomes are promising targeted drug delivery systems with the potential to improve the efficacy and safety profile of certain classes of drugs. Though attractive, there are unique analytical challenges associated with the development of liposomal drugs including human dose prediction given these are multi-component drug delivery systems. In this study, we developed a multimodal imaging approach to provide a comprehensive distribution assessment for an antibacterial drug, GSK2485680, delivered as a liposomal formulation (Lipo680) in a mouse thigh model of bacterial infection to support human dose prediction. Positron emission tomography (PET) imaging was used to track the in vivo biodistribution of Lipo680 over 48 h post-injection providing a clear assessment of the uptake in various tissues and, importantly, the selective accumulation at the site of infection. In addition, a pharmacokinetic model was created to evaluate the kinetics of Lipo680 in different tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was then used to quantify the distribution of GSK2485680 and to qualitatively assess the distribution of a liposomal lipid throughout sections of infected and non-infected hindlimb tissues at high spatial resolution. Through the combination of both PET and MALDI IMS, we observed excellent correlation between the Lipo680-radionuclide signal detected by PET with the GSK2485680 and lipid component signals detected by MALDI IMS. This multimodal translational method can reduce drug attrition by generating comprehensive biodistribution profiles of drug delivery systems to provide mechanistic insight and elucidate safety concerns. Liposomal formulations have potential to deliver therapeutics across a broad array of different indications, and this work serves as a template to aid in delivering future liposomal drugs to the clinic.


Asunto(s)
Enfermedades Transmisibles , Liposomas , Animales , Ratones , Humanos , Liposomas/química , Distribución Tisular , Antibacterianos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Tomografía de Emisión de Positrones , Imagen Multimodal , Lípidos
5.
Front Immunol ; 13: 1081156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713458

RESUMEN

The goal of this study was to utilize a multimodal magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging approach to assess the local innate immune response in skeletal muscle and draining lymph node following vaccination in rats using two different vaccine platforms (AS01 adjuvanted protein and lipid nanoparticle (LNP) encapsulated Self-Amplifying mRNA (SAM)). MRI and 18FDG PET imaging were performed temporally at baseline, 4, 24, 48, and 72 hr post Prime and Prime-Boost vaccination in hindlimb with Cytomegalovirus (CMV) gB and pentamer proteins formulated with AS01, LNP encapsulated CMV gB protein-encoding SAM (CMV SAM), AS01 or with LNP carrier controls. Both CMV AS01 and CMV SAM resulted in a rapid MRI and PET signal enhancement in hindlimb muscles and draining popliteal lymph node reflecting innate and possibly adaptive immune response. MRI signal enhancement and total 18FDG uptake observed in the hindlimb was greater in the CMV SAM vs CMV AS01 group (↑2.3 - 4.3-fold in AUC) and the MRI signal enhancement peak and duration were temporally shifted right in the CMV SAM group following both Prime and Prime-Boost administration. While cytokine profiles were similar among groups, there was good temporal correlation only between IL-6, IL-13, and MRI/PET endpoints. Imaging mass cytometry was performed on lymph node sections at 72 hr post Prime and Prime-Boost vaccination to characterize the innate and adaptive immune cell signatures. Cell proximity analysis indicated that each follicular dendritic cell interacted with more follicular B cells in the CMV AS01 than in the CMV SAM group, supporting the stronger humoral immune response observed in the CMV AS01 group. A strong correlation between lymph node MRI T2 value and nearest-neighbor analysis of follicular dendritic cell and follicular B cells was observed (r=0.808, P<0.01). These data suggest that spatiotemporal imaging data together with AI/ML approaches may help establish whether in vivo imaging biomarkers can predict local and systemic immune responses following vaccination.


Asunto(s)
Infecciones por Citomegalovirus , Fluorodesoxiglucosa F18 , Ratas , Animales , Vacunación , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones , Citomegalovirus , Inmunidad Innata , Músculo Esquelético/diagnóstico por imagen , Imagen Multimodal , Ganglios Linfáticos/diagnóstico por imagen
6.
Birth Defects Res ; 110(3): 276-298, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29159925

RESUMEN

OBJECTIVES: In our laboratory we evaluated the use of micro-computed tomography (micro-CT) using a high resolution acquisition protocol and fetuses obtained on Gestation Day (GD) 29 (mating = GD 0). METHODS: To show concordance between traditional Alizarin Red S stain and micro-CT skeletal examination methods, 103 fetuses from 19 untreated Dutch belted rabbits were obtained by cesarean section and stored frozen. The fetuses were thawed, imaged and examined digitally by micro-CT, then stained and re-examined using traditional methods. RESULTS: A total of 12 individual malformations and 35 unique variations were detected by both methods. Differences in the extent of ossification were found in only 51 of 26,196 bones while 99.8% of the observations were identical. Of the 51 differences, 31 were an unossified fifth medial phalanx of the forepaw indicating that very low-density skeletal bones may be visible by Alizarin Red stain but not by micro-CT scan. To establish this methodology under pharmaceutical testing conditions, we obtained and imaged by micro-CT Alizarin Red S stained abnormal fetal rabbit skeletons previously exposed to a drug candidate associated with craniofacial malformations in humans. All of the types of skeletal abnormalities first identified by staining were also detected by micro-CT examination. Representative images of these 66 different fetal skeletal abnormalities were characterized, and compiled to illustrate visual concordance between micro-CT scanned and traditional Alizarin Red S stained skeletons. CONCLUSION: Micro-CT imaging is an accurate, reliable and robust method that can be used as an alternative to stain when examining fetal rabbit skeletons in developmental toxicity studies.


Asunto(s)
Antraquinonas/química , Huesos , Feto , Coloración y Etiquetado , Microtomografía por Rayos X/métodos , Animales , Huesos/anomalías , Huesos/diagnóstico por imagen , Huesos/embriología , Feto/anomalías , Feto/diagnóstico por imagen , Feto/embriología , Conejos
7.
J Control Release ; 268: 102-112, 2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29042321

RESUMEN

Long-Acting Parenterals (LAPs) have been used in the clinic to provide sustained therapeutic drug levels at a target site, and thereby reducing the frequency of dosing required. In an effort to understand the factors associated with long-acting cabotegravir (GSK1265744 LAP) pharmacokinetic variability, the current study was designed to investigate the temporal relationship between intramuscular (IM) or subcutaneous (SC) drug depot morphology and distribution kinetics with plasma pharmacokinetics. Therefore, a multi-modal molecular imaging (MRI & MALDI IMS) approach was employed to examine the temporal GSK1265744 LAP biodistribution in rat following either IM or SC administration. Serial MRI was performed immediately post drug administration, and then at day 1 (24h post), 2, 3, 4, 7, and 14. In a separate cohort of rats, an MRI contrast agent, Feraheme® (USPIO), was administered 2days post IM drug injection in order to investigate the potential involvement of macrophages trafficking to the GSK1265744 LAP and Vehicle depot sites. The GSK1265744 LAP depot volume increased rapidly by day 2 in the IM injected rats (~3-7 fold) compared with a ~1 fold increase in the SC injected rats. In addition, the USPIO contrast agent labeled macrophages were shown to be present in the depot region of the GSK1265744 LAP injected gastrocnemius while the Vehicle injected gastrocnemius appeared to show reduced uptake. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) of muscle and abdominal tissue sections identified the drug content primarily within the depot. Co-registration of the GSK1265744 ion images with immunohistochemical images established that the drug was taken up by macrophages associated with the depot. Linear regression analysis demonstrated that the drug depot characteristics including volume, surface area, and perimeter assessed by MRI at day 2 correlated with early time point plasma drug concentrations. In summary, a multimodal molecular imaging approach was used to identify the drug depot location and volumetric/physiologic changes in both IM and SC locations following GSK1265744 LAP administration. The IM depot volume increased rapidly to a maximum volume at 2days post-GSK1265744 LAP administration, while the Vehicle depot did not suggesting that the active drug substance and/or related particle was a key driver for drug depot evolution. The depot expansion was associated with an increase in macrophage infiltration and edema in and around the depot region and was correlated to plasma drug concentration at early time points (0-4days). Consequently, molecular imaging approaches may be used in patients to help understand the biodistribution of GSK1265744 LAP and its associated pharmacokinetics.


Asunto(s)
Piridonas/administración & dosificación , Piridonas/farmacocinética , Animales , Medios de Contraste/administración & dosificación , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Óxido Ferrosoférrico/administración & dosificación , Inyecciones Intramusculares , Inyecciones Subcutáneas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Masculino , Imagen Multimodal , Piridonas/sangre , Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Distribución Tisular
8.
PLoS One ; 12(4): e0176075, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28448604

RESUMEN

The purpose of this work was to use various molecular imaging techniques to non-invasively assess GSK2849330 (anti HER3 ADCC and CDC enhanced 'AccretaMab' monoclonal antibody) pharmacokinetics and pharmacodynamics in human xenograft tumor-bearing mice. Immuno-PET biodistribution imaging of radiolabeled 89Zr-GSK2849330 was assessed in mice with HER3 negative (MIA-PaCa-2) and positive (CHL-1) human xenograft tumors. Dose dependency of GSK2849330 disposition was assessed using varying doses of unlabeled GSK2849330 co-injected with 89Zr-GSK2849330. In-vivo NIRF optical imaging and ex-vivo confocal microscopy were used to assess the biodistribution of GSK2849330 and the HER3 receptor occupancy in HER3 positive xenograft tumors (BxPC3, and CHL-1). Ferumoxytol (USPIO) contrast-enhanced MRI was used to investigate the effects of GSK2849330 on tumor macrophage content in CHL-1 xenograft bearing mice. Immuno-PET imaging was used to monitor the whole body drug biodistribution and CHL-1 xenograft tumor uptake up to 144 hours post injection of 89Zr-GSK2849330. Both hepatic and tumor uptake were dose dependent and saturable. The optical imaging data in the BxPC3 xenograft tumor confirmed the tumor dose response finding in the Immuno-PET study. Confocal microscopy showed a distinguished cytoplasmic punctate staining pattern within individual CHL-1 cells. GSK2849330 inhibited tumor growth and this was associated with a significant decrease in MRI signal to noise ratio after USPIO injection and with a significant increase in tumor macrophages as confirmed by a quantitative immunohistochemistry analysis. By providing both dose response and time course data from both 89Zr and fluorescently labeled GSK2849330, complementary imaging studies were used to characterize GSK2849330 biodistribution and tumor uptake in vivo. Ferumoxytol-enhanced MRI was used to monitor aspects of the immune system response to GSK2849330. Together these approaches potentially provide clinically translatable, non-invasive techniques to support dose optimization, and assess immune activation and anti-tumor responses.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales/farmacocinética , Macrófagos/inmunología , Radiofármacos/farmacocinética , Receptor ErbB-3/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/uso terapéutico , Línea Celular Tumoral , Femenino , Óxido Ferrosoférrico/química , Humanos , Inmunohistoquímica , Marcaje Isotópico , Macrófagos/citología , Macrófagos/patología , Ratones , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Radioisótopos , Radiofármacos/química , Radiofármacos/uso terapéutico , Receptor ErbB-3/metabolismo , Distribución Tisular , Trasplante Heterólogo , Circonio/química
9.
Oncotarget ; 7(26): 39861-39871, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27223434

RESUMEN

Fibroblast growth factor (FGF) ligand-dependent signaling has a fundamental role in cancer development and tumor maintenance. GSK3052230 (also known as FP-1039) is a soluble decoy receptor that sequesters FGFs and inhibits FGFR signaling. Herein, the efficacy of this molecule was tested in models of mesothelioma, a tumor type shown to express high levels of FGF2 and FGFR1. GSK3052230 demonstrated antiproliferative activity across a panel of mesothelioma cell lines and inhibited growth of tumor xenografts in mice. High expression of FGF2 and FGFR1 correlated well with response to FGF pathway inhibition. GSK3052230 inhibited MAPK signaling as evidenced by decreased phospho-ERK and phospho-S6 levels in vitro and in vivo. Additionally, dose-dependent and statistically-significant reductions in tumor vessel density were observed in GSK3052230-treated tumors compared to vehicle-treated tumors. These data support the role of GSK3052230 in effectively targeting FGF-FGFR autocrine signaling in mesothelioma, demonstrate its impact on tumor growth and angiogenesis, and provide a rationale for the current clinical evaluation of this molecule in mesothelioma patients.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Mesotelioma/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Animales , Comunicación Autocrina , Línea Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoglobulina G/química , Ligandos , Imagen por Resonancia Magnética , Ratones , Ratones SCID , Trasplante de Neoplasias , Neovascularización Patológica , Proteínas de Fusión Oncogénica/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Proteínas Recombinantes de Fusión
10.
Regul Toxicol Pharmacol ; 77: 100-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26930635

RESUMEN

During the past two decades the use and refinements of imaging modalities have markedly increased making it possible to image embryos and fetuses used in pivotal nonclinical studies submitted to regulatory agencies. Implementing these technologies into the Good Laboratory Practice environment requires rigorous testing, validation, and documentation to ensure the reproducibility of data. A workshop on current practices and regulatory requirements was held with the goal of defining minimal criteria for the proper implementation of these technologies and subsequent submission to regulatory agencies. Micro-computed tomography (micro-CT) is especially well suited for high-throughput evaluations, and is gaining popularity to evaluate fetal skeletons to assess the potential developmental toxicity of test agents. This workshop was convened to help scientists in the developmental toxicology field understand and apply micro-CT technology to nonclinical toxicology studies and facilitate the regulatory acceptance of imaging data. Presentations and workshop discussions covered: (1) principles of micro-CT fetal imaging; (2) concordance of findings with conventional skeletal evaluations; and (3) regulatory requirements for validating the system. Establishing these requirements for micro-CT examination can provide a path forward for laboratories considering implementing this technology and provide regulatory agencies with a basis to consider the acceptability of data generated via this technology.


Asunto(s)
Anomalías Inducidas por Medicamentos/diagnóstico por imagen , Huesos/diagnóstico por imagen , Biología Evolutiva/métodos , Feto/diagnóstico por imagen , Pruebas de Toxicidad/métodos , Microtomografía por Rayos X , Animales , Huesos/anomalías , Huesos/efectos de los fármacos , Consenso , Biología Evolutiva/normas , Feto/anomalías , Feto/efectos de los fármacos , Guías como Asunto , Humanos , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Pruebas de Toxicidad/normas , Microtomografía por Rayos X/normas
11.
Drug Discov Today Technol ; 10(3): e343-50, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24050130

RESUMEN

Preclinical imaging with magnetic resonance imaging (MRI), computerised tomography (CT), ultrasound (US), positron emission tomography (PET) or single-photon emission computed tomography (SPECT) enable non-invasive measures of tissue structure, function or metabolism in vivo. The technologies can add value to preclinical studies by enabling dynamic pharmacological observations on the same animal and because of possibilities for relatively direct clinical translation. Potential benefits from the application of preclinical imaging should be considered routinely in drug development.


Asunto(s)
Diagnóstico por Imagen , Evaluación Preclínica de Medicamentos/métodos , Animales , Quimioterapia , Humanos , Farmacocinética
12.
Cancer Res ; 73(6): 1993-2002, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23333938

RESUMEN

The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.


Asunto(s)
Adenina/análogos & derivados , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , eIF-2 Quinasa/antagonistas & inhibidores , Adenina/farmacología , Animales , Femenino , Perfilación de la Expresión Génica , Ratones
13.
Sci Transl Med ; 4(159): 159ra148, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23136043

RESUMEN

Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca(2+) influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.


Asunto(s)
Insuficiencia Cardíaca/complicaciones , Moduladores del Transporte de Membrana/administración & dosificación , Moduladores del Transporte de Membrana/uso terapéutico , Edema Pulmonar/tratamiento farmacológico , Edema Pulmonar/prevención & control , Canales Catiónicos TRPV/antagonistas & inhibidores , Administración Oral , Animales , Presión Sanguínea/efectos de los fármacos , Calcio/metabolismo , Modelos Animales de Enfermedad , Diuréticos/farmacología , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Endotelio/patología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Ratones , Ratones Noqueados , Permeabilidad/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Edema Pulmonar/etiología , Edema Pulmonar/patología , Ratas , Canales Catiónicos TRPV/metabolismo , Equilibrio Hidroelectrolítico/efectos de los fármacos
14.
Exp Biol Med (Maywood) ; 237(3): 263-70, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22328593

RESUMEN

Physical activity is frequently used as a strategy to decrease pathogenesis and improve outcomes in chronic pathologies such as metabolic or cardiac diseases. In mice, it has been shown that voluntary wheel running (VWR) could induce an aerobic training effect and may provide a means of exploring the relationship between physical activity and the progression of pathology, or the effect of a drug on locomotor activity. To the best of our knowledge, in vivo magnetic resonance imaging (MRI) and other non-invasive methods had not been investigated for training evaluation in mice; therefore, it was proposed to test an MRI method coupled with a cardiorespiratory gating system on C57Bl/6 mice for in vivo heart anatomical and functional characterization in both trained and untrained animals. Twenty mice were either assigned to a 12-week VWR program or to a control group (CON - no wheel in the cage). At week 12, MRI scans showed an increase in the left ventricular (LV) wall mass in the VWR group compared with the CON group. The ex vivo measurements also found an increase in the heart and LV weight, as well as an increase in oxidative enzyme activities (i.e. cytochrome c oxidase [COx] in the soleus). In addition, correlations have been observed between ex vivo LV/body weight ratio, COx activity in the soleus and in vivo MRI LV wall mass/body weight. In conclusion, mouse cardiac MRI methods coupled with a cardio-respiratory gating system are sufficiently effective and feasible for non-invasive, training-induced heart hypertrophy characterization, and may be used for longitudinal training level follow-up in mouse models of cardiovascular and metabolic diseases.


Asunto(s)
Corazón/anatomía & histología , Corazón/fisiología , Imagen por Resonancia Magnética , Músculo Esquelético/enzimología , Condicionamiento Físico Animal/fisiología , Animales , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Magn Reson Med ; 67(1): 191-200, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21671268

RESUMEN

The temporal evolution of heart failure and associated pulmonary congestion in rodent heart failure models has not yet been characterized simultaneously and noninvasively. In this study, MRI was used to assess the serial progression of left-ventricular dysfunction and lung congestion in mice following myocardial infarction (MI). Cardiac and lung (1) H MRI was performed at baseline and every 3 days up to 13 days postsurgery in sham and MI mice. Respiratory parameters and terminal lung mechanics were assessed followed by histological analysis. MRI revealed that the MI induced significant pulmonary congestion/edema as detected by increased MRI signal intensity and was associated with increased lung volume and reduced cardiac contractility. Pulmonary function was also depressed in MI-mice, reflected by a reduced tidal volume and a low minute ventilation rate. Additionally, MI significantly increased lung resistance, markedly reduced lung compliance and total lung capacity and significantly increased lung weights by 57%. Significant correlations were observed between the MRI measured lung congestion, lung volume, ejection fraction, and lung wet-weight parameters. This study demonstrates that MRI may be of significant value in evaluating therapies aimed at primary intervention for lung congestion and secondary prevention of unfavorable cardiac remodeling.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Edema Pulmonar/patología , Edema Pulmonar/fisiopatología , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular/fisiología , Animales , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Edema Pulmonar/complicaciones , Disfunción Ventricular Izquierda/complicaciones
16.
PLoS One ; 6(8): e23570, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21887274

RESUMEN

BACKGROUND: The cardioprotective effects of glucagon-like peptide-1 (GLP-1) and analogs have been previously reported. We tested the hypothesis that albiglutide, a novel long half-life analog of GLP-1, may protect the heart against I/R injury by increasing carbohydrate utilization and improving cardiac energetic efficiency. METHODS/PRINCIPAL FINDINGS: Sprague-Dawley rats were treated with albiglutide and subjected to 30 min myocardial ischemia followed by 24 h reperfusion. Left ventricle infarct size, hemodynamics, function and energetics were determined. In addition, cardiac glucose disposal, carbohydrate metabolism and metabolic gene expression were assessed. Albiglutide significantly reduced infarct size and concomitantly improved post-ischemic hemodynamics, cardiac function and energetic parameters. Albiglutide markedly increased both in vivo and ex vivo cardiac glucose uptake while reducing lactate efflux. Analysis of metabolic substrate utilization directly in the heart showed that albiglutide increased the relative carbohydrate versus fat oxidation which in part was due to an increase in both glucose and lactate oxidation. Metabolic gene expression analysis indicated upregulation of key glucose metabolism genes in the non-ischemic myocardium by albiglutide. CONCLUSION/SIGNIFICANCE: Albiglutide reduced myocardial infarct size and improved cardiac function and energetics following myocardial I/R injury. The observed benefits were associated with enhanced myocardial glucose uptake and a shift toward a more energetically favorable substrate metabolism by increasing both glucose and lactate oxidation. These findings suggest that albiglutide may have direct therapeutic potential for improving cardiac energetics and function.


Asunto(s)
Cardiotónicos/farmacología , Péptido 1 Similar al Glucagón/análogos & derivados , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , AMP Cíclico/metabolismo , Metabolismo Energético/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Péptido 1 Similar al Glucagón/administración & dosificación , Péptido 1 Similar al Glucagón/sangre , Péptido 1 Similar al Glucagón/farmacología , Corazón , Pruebas de Función Cardíaca , Hemodinámica/efectos de los fármacos , Técnicas In Vitro , Insulina/sangre , Ácido Láctico/sangre , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/fisiopatología , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley , Transcripción Genética/efectos de los fármacos
17.
Invest Radiol ; 45(11): 702-7, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20829703

RESUMEN

OBJECTIVE: Inflammation within atherosclerotic lesions increases the risk for plaque rupture and thrombosis. A functional approach to plaque analysis is the intravenous administration of ultrasmall superparamagnetic particles of iron oxide (USPIO) that enables visualization of macrophages residing in the plaques. In this study, we sought to characterize the age-related inflammatory status associated with atherosclerosis lesion progression in ApoE mice using USPIO-enhanced magnetic resonance imaging (MRI). MATERIALS AND METHODS: A total of 24 ApoE mice were divided in 4 groups (N = 6) and were given a high cholesterol diet from 6 weeks of age to the end of the protocol. One group per MR time point was investigated at 10, 16, 24, and 34 weeks of age. Each MR examination was performed on a 4.7 T scanner and consisted of baseline and 48 hours post-USPIO administration imaging sessions. P904, a USPIO contrast agent (Guerbet, Paris, France) with a potential for plaque macrophage targeting, was used.Vessel wall area measurements were performed on high resolution spin echo transverse images. Multi-echo gradient-echo images acquired with the same geometry were used to calculate T2* maps of the vessel wall using a pixel-by-pixel monoexponential fit. A one-way analysis of variance was performed to characterize the temporal variation of vessel wall area, susceptibility artifact area, baseline, and post-USPIO T2* values. MR measurements were correlated with the histologic findings. RESULTS: A significant increase was found in the aortic wall area from 1.4 ± 0.2 at 10 weeks to 2.0 ± 0.3 mm at 34 weeks of age (P < 0.05). Concerning the post-USPIO MRI, signal loss regions, with patterns spanning from focal to the complete disappearance of the vessel wall, were observed on all postcontrast images. A significant increase in the size of the susceptibility artifact was observed from 0.5 ± 0.2 to 2.4 ± 1.0 at 24 weeks (P < 0.05) and to 2.0 ± 0.9 mm at 34 weeks (P < 0.05).The T2* values calculated on the 48 hours post-USPIO images were shorter compared with baseline. The decrease was 34% ± 16% at 10 weeks, 57% ± 11% at 16 weeks, 57% ± 16% at 24 weeks, and 48% ± 13% at 34 weeks.The Pearson's correlation test between measurement of aortic wall area performed on both MR images and histologic analysis showed a statistically significant correlation (r = 0.695 and P < 0.05). A correlation was also obtained between the signal loss area and the macrophages covered area (r = 0.68 and P < 0.05). CONCLUSIONS: This study demonstrated the feasibility of USPIO-enhanced MRI in assessing the inflammatory status related to the temporal progression of the atherosclerosis plaque in ApoE transgenic mice model of atherosclerosis. In our experimental conditions, the vascular inflammation peak, for the ApoE mice feeding high-fat/high-cholesterol diet is measured between 16 and 24 weeks of age.


Asunto(s)
Aorta/patología , Arteriosclerosis/diagnóstico , Inflamación/diagnóstico , Macrófagos/patología , Imagen por Resonancia Magnética/instrumentación , Trombosis/diagnóstico , Factores de Edad , Análisis de Varianza , Animales , Apolipoproteínas E , Arteriosclerosis/patología , Progresión de la Enfermedad , Estudios de Factibilidad , Procesamiento de Imagen Asistido por Computador , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Medición de Riesgo , Rotura , Programas Informáticos , Estadística como Asunto , Trombosis/patología
18.
Invest Radiol ; 45(5): 262-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20375846

RESUMEN

BACKGROUND: M1-activated Macrophages (M1M) play a major role in atherosclerotic lesions of aortic arch, promoting proinflammatory response. In vivo trafficking of M1M in aortic plaques is therefore critical. METHODS: M1M from bone marrow cell culture were magnetically labeled, using iron nanoparticles, intravenously injected and followed up with 3 day magnetic resonance imaging (MRI) in mice developing macrophage-laden atheroma (ApoE2 knock-in mice). M1M recruitment in aortic arch lesions was assessed both by MRI and histology. RESULTS: In all ApoE2 knock-in mice injected with labeled cells, high resolution MRI showed localized signal loss regions in the thickened aortic wall, with a maximal effect at day 2 (-34% +/- 7.3% P < 0.001 compared with baseline). This was confirmed with Prussian blue (iron) staining and corresponded to M1M (Major Histo-compatibility Complex II positive). Clear different intraplaque and adventitial dynamic distribution profiles of labeled cells were observed during the 3 days. CONCLUSION: M1M dynamic MRI is a promising marker to noninvasively assess the macrophage trafficking underlying aortic arch plaque progression.


Asunto(s)
Enfermedades de la Aorta/diagnóstico , Arteriosclerosis/diagnóstico , Activación de Macrófagos/fisiología , Imagen por Resonancia Magnética , Animales , Apolipoproteína E2/genética , Biomarcadores , Técnicas de Sustitución del Gen , Macrófagos/fisiología , Ratones , Ratones Transgénicos
19.
Radiology ; 252(2): 401-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19703881

RESUMEN

PURPOSE: To evaluate the use of a recently developed fast-clearing ultrasmall superparamagnetic iron oxide (USPIO) for detection of vascular inflammation in atherosclerotic plaque. MATERIALS AND METHODS: The study protocol was approved by the animal experimentation ethics committee. A recently introduced USPIO, P904, and a reference-standard USPIO, ferumoxtran-10, were tested in a rabbit model of induced aortic atherosclerosis. In vivo magnetic resonance (MR) angiography and T2*-weighted plaque MR imaging were performed at baseline and after administration of P904 and ferumoxtran-10 (administered dose for both, 1000 micromol of iron per kilogram of body weight) in 26 hyperlipidemic New Zealand white rabbits. The variation in vessel wall area over time was evaluated with nonparametric testing. Ex vivo MR imaging findings were compared with iron content at linear regression analysis. RESULTS: With in vivo MR imaging, plaque analysis was possible as early as 24 hours after P904 injection. The authors observed a 27.75% increase in vessel wall area due to susceptibility artifacts on day 2 (P = .04) and a 38.81% increase on day 3 (P = .04) after P904 administration compared with a 44.5% increase in vessel wall area on day 7 (P = .04) and a 34.8% increase on day 10 (P = .22) after ferumoxtran-10 administration. These susceptibility artifacts were correlated with intraplaque iron uptake in the corresponding histologic slices. The number of pixels with signal loss on the ex vivo MR images was linearly correlated with the logarithm of the iron concentration (P = .0001; R(2) = 0.93). CONCLUSION: Plaque inflammation in rabbits can be detected earlier with P904 than with ferumoxtran-10 owing to the faster blood pharmacokinetics and the early uptake of P904 in the reticuloendothelial system. SUPPLEMENTAL MATERIAL: http://radiology.rsnajnls.org/cgi/content/full/252/2/401/DC1.


Asunto(s)
Aortitis/metabolismo , Aortitis/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Hierro/farmacocinética , Angiografía por Resonancia Magnética/métodos , Óxidos/farmacocinética , Animales , Medios de Contraste/farmacocinética , Dextranos , Modelos Animales de Enfermedad , Óxido Ferrosoférrico , Humanos , Nanopartículas de Magnetita , Tasa de Depuración Metabólica , Proyectos Piloto , Conejos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Invest Radiol ; 44(3): 151-8, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19169144

RESUMEN

OBJECTIVE: Atherosclerosis involves an inflammatory process characterized by cellular and molecular responses. A slow-clearance blood-pool paramagnetic agent (CMD-A2-Gd-DOTA: P717) chemically modified to create a functionalized product (F-P717) for targeting inflammation in vessel walls was evaluated in vivo in mice. METHODS AND RESULTS: Carboxylate and sulfate groups were grafted onto the macromolecular paramagnetic Gd-DOTA-dextran backbone. Products were also fluorescently labeled with rhodamine isothiocyanate. Pre- and postcontrast MRI was performed on a 2-Tesla magnet in ApoE-/- and control C57BL/6 mice after P717 or F-P717 injection at a dose of 60 micromol Gd/kg. Axial T1-weighted images of the abdominal aorta were obtained using a 2D multislice spin-echo sequence. F-P717 significantly enhanced the magnetic resonance imaging (MRI) signal in the abdominal aortic wall of ApoE-/- mice (>50% signal-to-noise ratio increase between 10 and 30 minutes), but not of control mice. P717 produced only moderate (<20%) MRI signal enhancement within the same time frame. The MRI data were correlated to histopathology. Immunofluorescence in ApoE-/- mice colocalized F-P717 but not P717 with the inflammatory area revealed by P-selectin labeling. CONCLUSION: This study demonstrates the efficacy of F-P717 as a new molecular imaging agent for noninvasive in vivo MRI location of inflammatory vascular tree lesions in ApoE-/- mice.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/patología , Materiales Biomiméticos , Medios de Contraste , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Vasculitis/patología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...