Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 365: 121517, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908153

RESUMEN

In this study, treated wastewater and Multi-Stage Flash (MSF) brine were integrated into the Forward Osmosis (FO) system using pressure stimuli-responsive Nanofiltration (PSRNF) membranes to dilute magnesium, calcium, and sulfate MSF plant brine reject. The deposition of magnesium sulfate and calcium sulfate in the heat exchanger is one of the main issues affecting the performance and efficiency of MSF thermal desalination plants. Reducing the concentration of the divalent ions can minimize scale formation and deposition to a level that allows the MSF plant to operate at high top brine temperature (TBT) and without scale problems. The PSRNF membranes were chosen in the FO process because of their high water permeability, rejection of divalent and monovalent ions, small structure parameter (S), and inexpensiveness compared to commercial FO membranes. Three PSRNF membranes were tested in the FO process with the feed solution facing the active membrane layer to avoid active layer delamination. Although the PSRNF membrane exhibited negligible water flux at 0 bar, it increased when a 2-4 bar was applied to the feed solution. The wastewater temperature was set at 25 °C while 40 °C was the brine operational temperature to mimic the field situation. A maximum average water flux of 39.5 L/m2h was recorded at 4 bar feed pressure when the PSRNF membrane was used for the brine dilution, achieving up to 42% divalent ions dilution at 0.02 kWh/m3 specific power consumption. The average water flux in the PRSNF membrane was 35% higher than that in the commercial TFC FO membrane. Notably, the PSRNF membrane is ten times cheaper than commercial FO membranes. Notably, the PSRNF membrane is ten times cheaper than commercial FO membranes, achieving substantial cost reductions and pioneering advancements in FO purification technology.

2.
Sci Total Environ ; 930: 172516, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38636874

RESUMEN

The electrokinetic process has been proposed for in-situ soil remediation to minimize excavation work and exposure to hazardous materials. The precipitation of heavy metals in alkaline pH near the cathode is still challenging. Reactive filter media and enhancement agents have been used in electrokinetics to enhance the removal of heavy metals. This study investigated coupling industrial iron slag waste and iron slag-activated carbon reactive filter media with electrokinetic for a single and mixture of heavy metals treatment. Instead of using acid enhancement agents, the anolyte solution was recycled to neutralize the alkaline front at the cathode, reducing the operation cost and chemical use. Experiments were conducted for 2 and 3 weeks at 20 mA electric current. Copper removal increased from 3.11 % to 23 % when iron slag reactive filter media was coupled with electrokinetic. Copper removal increased to 70.14 % in the electrokinetic experiment with iron slag-activated carbon reactive filter media. The copper removal increased to 89.21 % when the anolyte solution was recycled to the cathode compartment. Copper removal reached 93.45 % when the reactive filter media-electrokinetic process with anolyte recirculation was extended to 3 weeks. The reactive filter media- an electrokinetic process with anolyte recycling was evaluated for removing copper, nickel, and zinc mixture, and results revealed 81.1 % copper removal, 89.04 % nickel removal, and 92.31 % zinc removal in a 3-week experiment. The greater nickel and zinc removal is attributed to their higher solubility than copper. The results demonstrated the cost-effectiveness and efficiency of the electrokinetic with iron slag-activated carbon reactive filter media with anolyte recirculation for soil remediation from heavy metals.

3.
J Hazard Mater ; 460: 132360, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657326

RESUMEN

The efficacy of the Standalone Electrokinetic (EK) process in soil PFAS removal is negligible, primarily due to the intersecting mechanisms of electromigration and electroosmosis transportation. Consequently, the redistribution of PFAS across the soil matrix occurs, hampering effective remediation efforts. Permeable reactive barrier (PRB) has been used to capture contaminants and extract them at the end of the EK process. This study conducted laboratory-scale tests to evaluate the feasibility of the iron slag PRB enhanced-EK process in conjunction with Sodium Cholate (NaC) biosurfactant as a cost-effective and sustainable method for removing PFOA from the soil. A 2 cm iron slag-based PRB with a pH of 9.5, obtained from the steel-making industry, was strategically embedded in the middle of the EK reactors to capture PFOA within the soil. The main component of the slag, iron oxide, exhibited significant adsorption capacity for PFOA contamination. The laboratory-scale tests were conducted over two weeks, revealing a PFOA removal rate of more than 79% in the slag/activated carbon PRB-EK test with NaC enhancement and 70% PFOA removal in the slag/activated carbon PRB-EK without NaC. By extending the duration of the slag/AC PRB-EK test with NaC enhancement to three weeks, the PFOA removal rate increased to 94.09%, with the slag/AC PRB capturing over 87% of the initial PFOA concentration of 10 mg/L. The specific energy required for soil decontamination by the EK process was determined to be 0.15 kWh/kg. The outcomes of this study confirm the feasibility of utilizing iron slag waste in the EK process to capture PFOA contaminants, offering a sustainable approach to soil decontamination. Combining iron slag PRB and NaC biosurfactant provides a cost-effective and environmentally friendly method for efficient PFOA removal from soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...