Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298388

RESUMEN

In recent research developments, the application of mobile agents (MAs) has attracted extensive research in wireless sensor networks (WSNs) due to the unique benefits it offers, such as energy conservation, network bandwidth saving, and flexibility of open usage for various WSN applications. The majority of the proposed research ideas on dynamic itinerary planning agent-based algorithms are efficient when dealing with node failure as a result of energy depletion. However, they generate inefficient groups for MAs itineraries, which introduces a delay in broadcasting data return back to the sink node, and they do not consider the expanding size of the MAs during moving towards a sequence of related nodes. In order to rectify these research issues, we propose a new Graph-based Dynamic Multi-Mobile Agent Itinerary Planning approach (GDMIP). GDMIP works with "Directed Acyclic Graph" (DAG) techniques and distributes sensor nodes into various and efficient group-based shortest-identified routes, which cover all nodes in the network using intuitionistic fuzzy sets. MAs are restricted from moving in the predefined path and routes and are responsible for collecting data from the assigned groups. The experimental results of our proposed work show the effectiveness and expediency compared to the published approaches. Therefore, our proposed algorithm is more energy efficient and effective for task delay (time).


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Algoritmos
2.
Sensors (Basel) ; 22(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146273

RESUMEN

Pallet racking is an essential element within warehouses, distribution centers, and manufacturing facilities. To guarantee its safe operation as well as stock protection and personnel safety, pallet racking requires continuous inspections and timely maintenance in the case of damage being discovered. Conventionally, a rack inspection is a manual quality inspection process completed by certified inspectors. The manual process results in operational down-time as well as inspection and certification costs and undiscovered damage due to human error. Inspired by the trend toward smart industrial operations, we present a computer vision-based autonomous rack inspection framework centered around YOLOv7 architecture. Additionally, we propose a domain variance modeling mechanism for addressing the issue of data scarcity through the generation of representative data samples. Our proposed framework achieved a mean average precision of 91.1%.


Asunto(s)
Industrias , Recolección de Datos
3.
Sensors (Basel) ; 20(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244458

RESUMEN

The introduction of 5G communication capabilities presents additional challenges for the development of products and services that can fully exploit the opportunities offered by high bandwidth, low latency networking. This is particularly relevant to an emerging interest in the Industrial Internet of Things (IIoT), which is a foundation stone of recent technological revolutions such as Digital Manufacturing. A crucial aspect of this is to securely authenticate complex transactions between IIoT devices, whilst marshalling adversarial requests for system authorisation, without the need for a centralised authentication mechanism which cannot scale to the size needed. In this article we combine Physically Unclonable Function (PUF) hardware (using Field Programmable Gate Arrays-FPGAs), together with a multi-layer approach to cloud computing from the National Institute of Standards and Technology (NIST). Through this, we demonstrate an approach to facilitate the development of improved multi-layer authentication mechanisms. We extend prior work to utilise hardware security primitives for adversarial trojan detection, which is inspired by a biological approach to parameter analysis. This approach is an effective demonstration of attack prevention, both from internal and external adversaries. The security is further hardened through observation of the device parameters of connected IIoT equipment. We demonstrate that the proposed architecture can service a significantly high load of device authentication requests using a multi-layer architecture in an arbitrarily acceptable time of less than 1 second.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...