Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257268

RESUMEN

This study successfully synthesized zinc oxide nanorod needles (ZnO-NRNs) using an environmentally friendly method employing Cymbopogon Proximus extract. The resulting ZnO-NRNs exhibited exceptional physicochemical and structural properties, confirmed through various characterization techniques, including UV-Vis spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The analysis revealed a hexagonal wurtzite structure with high crystallinity, a 3.6 eV band gap, and a notably blue-shifted absorption band. ZnO-NRNs showed impressive photocatalytic activity, degrading Rhodamine B dye by 97% under UV and visible sunlight, highlighting their photostability and reusability. This green synthesis process offers cost effectiveness and environmental sustainability for practical applications.

2.
ACS Omega ; 7(3): 2786-2797, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35097275

RESUMEN

In the present work, the aim is to synthesize reduced graphene oxide (rGO) and zinc:reduced graphene oxide composite catalysts (ZnO:rGO) for esterification of acetic acid with n-heptanol. The physical and chemical characteristics of the rGO and rGO-metal oxide composite catalysts such as textural surface characteristics, surface morphology, thermal stability, functional groups, and elemental analysis were studied. The surface areas of rGO, ZnO(0.5 M), and ZnO(1 M) were recorded, respectively, at 31.72, 27.65, and 36.19 m2 g-1. Furthermore, esterification reaction parameters such as the reaction time, catalyst dosage, and reaction temperature for acetic acid were optimized to check the feasibility of rGO-metal oxide composites for a better conversion percentage of acetic acid. The optimized catalyst was selected for further optimization, and the optimum reaction parameters found were 0.1 wt % of catalyst, 160 min reaction duration, and 100 °C reaction temperature with a maximal yield of 100%. At 110 °C, the reaction conducted in the presence of 0.1 g of catalyst displayed more yield than the uncatalyzed reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...