Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 270(Pt 2): 132254, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729501

RESUMEN

Therapeutic proteins have been employed for centuries and reached approximately 50 % of all drugs investigated. By 2023, they represented one of the top 10 largest-selling pharma products ($387.03 billion) and are anticipated to reach around $653.35 billion by 2030. Growth hormones, insulin, and interferon (IFN α, γ, and ß) are among the leading applied therapeutic proteins with a higher market share. Protein-based therapies have opened new opportunities to control various diseases, including metabolic disorders, tumors, and viral outbreaks. Advanced recombinant DNA biotechnology has offered the production of therapeutic proteins and peptides for vaccination, drugs, and diagnostic tools. Prokaryotic and eukaryotic expression host systems, including bacterial, fungal, animal, mammalian, and plant cells usually applied for recombinant therapeutic proteins large-scale production. However, several limitations face therapeutic protein production and applications at the commercial level, including immunogenicity, integrity concerns, protein stability, and protein degradation under different circumstances. In this regard, protein-engineering strategies such as PEGylation, glycol-engineering, Fc-fusion, albumin conjugation, and fusion, assist in increasing targeting, product purity, production yield, functionality, and the half-life of therapeutic protein circulation. Therefore, a comprehensive insight into therapeutic protein research and findings pave the way for their successful implementation, which will be discussed in the current review.

2.
Polymers (Basel) ; 13(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34301131

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are a class of naturally occurring chemicals resulting from the insufficient combustion of fossil fuels. Among the PAHs, phenanthrene is one of the most studied compounds in the marine ecosystems. The damaging effects of phenanthrene on the environment are increasing day by day globally. To lessen its effect on the environment, it is essential to remove phenanthrene from the water resources in particular and the environment in general through advanced treatment methods such as photocatalytic degradation with high-performance characteristics and low cost. Therefore, the combination of metals or amalgamation of bimetallic oxides as an efficient photocatalyst demonstrated its propitiousness for the degradation of phenanthrene from aqueous solutions. Here, we reviewed the different nanocomposite materials as a photocatalyst, the mechanism and reactions to the treatment of phenanthrene, as well as the influence of other variables on the rate of phenanthrene degradation.

3.
Polymers (Basel) ; 13(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525497

RESUMEN

Agglomeration and restacking can reduce graphene oxide (GO) activity in a wide range of applications. Herein, GO was synthesized by a modified Hummer's method. To minimize restacking and agglomeration, in situ chemical oxidation polymerization was carried out to embed polyaniline (PANI) chains at the edges of GO sheets, to obtain GO-PANI nanocomposite. The GO-PANI was tested for the adsorptive removal of brilliant green (BG) from an aqueous solution through batch mode studies. Infrared (FT-IR) analysis revealed the dominance of hydroxyl and carboxylic functionalities over the GO-PANI surface. Solution pH-dependent BG uptake was observed, with maximum adsorption at pH 7, and attaining equilibrium in 30 min. The adsorption of BG onto GO-PANI was fit to the Langmuir isotherm, and pseudo-second-order kinetic models, with a maximum monolayer adsorption capacity (qm) of 142.8 mg/g. An endothermic adsorption process was observed. Mechanistically, π-π stacking interaction and electrostatic interaction played a critical role during BG adsorption on GO-PANI.

4.
J Hazard Mater ; 400: 123247, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32947690

RESUMEN

Solid waste conversion to value-added products is a stepping stone towards sustainable environment. Herein, sesame oil cake (SOC), an oil industry waste was utilized as a precursor to develop hydrochar (HC) samples by varying reaction temperature (150-250 °C) and time span (2-8 h), chemically treated with 10% H2O2 to optimize a sample with maximum yield and Pb(II) adsorption. Highest yield (29.2 %) and Pb(II) (24.57 mg/g at Co: 15 mg/L) adsorption was observed on SOCHC@200 °C/6 h, magnetized (mSOCHC@200 °C/6 h) for comparative study. XRD displayed highly crystalline SOCHC@200 °C/6 h and amorphous mSOCHC@200 °C/6 h, both having a characteristic cellulose peak at 14.9°. mSOCHC@200 °C/6 h displayed superparamagnetic behavior with 11.2 emu/g saturation magnetization. IR spectra confirmed the development of samples rich in oxygen containing functionalities; an additional peak for iron oxides appeared at 586 cm-1 in mSOCHC@200°C/6 h spectrum. Four major peaks at 531.9, 399.9, 348.2 and 284.7 eV, assigned to O 1s, N 1s, Ca 2p and C 1s, respectively were observed during XPS analyses. An additional peak at 710.3 eV, ascribed to Fe 2p was observed in mSOCHC@200C/6 h XPS spectrum, while a peak at 143.2 eV for Pb 4f appeared in spectra of both Pb(II) saturated samples. pH dependent (maximum at ∼6.7), exothermic Pb(II) adsorption was found. About 50-70% (at Co: 25 mg/L) adsorption on both SOCHC@200 °C/6 h and mSOCHC@200 °C/6 h was accomplished in a minute, attaining equilibrium in 180 and 240 min, respectively. Error functions and superimposed qe, exp. and qe, cal. values supported Langmuir isotherm model applicability, with respective qm values of 304.9 and 361.7 mg/g at 25 °C for SOCHC@200 °C/6 h and mSOCHC@200 °C/6 h. Kinetic data was fitted to PSO model. Highest (between 92.2 and 88.9 %) amount of Pb(II) from SOCHC@200 °C/6 h and mSOCHC@200 °C/6 h was eluted by 0.01 M HCl.

5.
Polymers (Basel) ; 12(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668712

RESUMEN

Four strains of bioflocculant-producing bacteria were isolated from a palm oil mill effluent (POME). The four bacterial strains were identified as Pseudomonas alcaliphila (B1), Pseudomonas oleovorans (B2), Pseudomonas chengduensis (B3), and Bacillus nitratireducens (B4) by molecular identification. Among the four bacterial strains, Bacillus nitratireducens (B4) achieved the highest flocculating activity (49.15%) towards kaolin clay suspension after eight hours of cultivation time and was selected for further studies. The optimum conditions for Eriochrome Black T (EBT) flocculation regarding initial pH, type of cation, and B4 dosage were determined to be pH 2, Ca2⁺ cations, and a dosage of 250 mL/L of nutrient broth containing B4. Under these conditions, above 90% of EBT dye removal was attained. Fourier transform infrared spectroscopic (FT-IR) analysis of the bioflocculant revealed the presence of hydroxyl, alkyl, carboxyl, and amino groups. This bioflocculant was demonstrated to possess a good flocculating activity, being a promissory, low-cost, harmless, and environmentally friendly alternative for the treatment of effluents contaminated with dyes.

6.
Polymers (Basel) ; 12(2)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102471

RESUMEN

Herein, commercially available Dowex 5WX8, a cation exchange polymeric resin, was modified through solvent impregnation with t-butyl phosphate (TBP) to produce a solvent impregnated resin (SIR), which was tested for the removal of rhodamine B (RhB) from water in batch adsorption experiments. The effect of SIR dosage, contact time, and pH on RhB adsorption was studied and optimized by response surface methodology (RSM), interaction, Pareto, and surface plots. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were respectively used for characterizing SIR surface morphology and identifying active binding sites before and after RhB adsorption. SEM showed that the pristine SIR surface was covered with irregular size and shape spots with some pores, while RhB saturated SIR surface was non-porous. FTIR revealed the involvement of electrostatic and π-π interactions during RhB adsorption on SIR. Dosage of SIR, contact time, and their interaction significantly affected RhB adsorption on SIR, while pH and its interaction with dosage and contact time did not. The optimum identified experimental conditions were 0.16 g of SIR dose and 27.66 min of contact time, which allowed for 98.45% color removal. Moreover, RhB adsorption equilibrium results fitted the Langmuir isotherm with a maximum monolayer capacity (qmax) of 43.47 mg/g.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...