Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930948

RESUMEN

Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses were conducted on essential oil extracted from Saudi Arabian Artemisia judaica L. (A. judaica) aerial parts, resulting in the identification of 58 constituents, representing 93.0% of the total oil composition. The oil primarily consisted of monoterpenes (38.6%), sesquiterpenes (14.1%), and other compounds such as ethyl esters and cyclic ketones (40.3%). The main components identified were piperitone (16.5%), ethyl cinnamate (12.9%), and camphor (9.7%). Multivariate statistical analyses (MVAs), including principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) analysis, were employed to compare the chemical makeup of this oil with 20 other A. judaica oils from various regions. The study revealed distinct clusters, highlighting unique chemotypes and geographic variations. Particularly, the oil from the current study demonstrated a specialized chemical profile with significant concentrations of specific compounds, contributing significantly to its distinctiveness. Further cytotoxicity testing on RAW264.7 macrophages suggested that concentrations below 20 µg/mL of A. judaica oil are suitable for future pharmacological investigations. This study provides valuable insights into the chemical diversity, geographic variations, and potential biomedical applications of these essential oils.


Asunto(s)
Artemisia , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles , Aceites Volátiles/química , Aceites Volátiles/farmacología , Artemisia/química , Arabia Saudita , Ratones , Animales , Células RAW 264.7 , Análisis de Componente Principal , Aceites de Plantas/química , Aceites de Plantas/farmacología
2.
Front Pharmacol ; 14: 1285243, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927588

RESUMEN

Introduction: Capparis cartilaginea Decne. (CC) originates from the dry regions of Asia and the Mediterranean basin. In traditional medicine, tea of CC leaves is commonly used to treat inflammatory conditions such as rheumatism, arthritis, and gout. Due to the limited studies on the phytochemistry and biological activity of CC compared to other members of the Capparaceae family, this work aims to: 1) Identify the chemical composition of CC extract and 2) Investigate the potential anti-inflammatory effect of CC extract, tea and the isolated compounds. Methods: To guarantee aim 1, high-speed countercurrent chromatography (HSCC) method; Nuclear Magnetic Resonance (NMR) and High-Performance Liquid Chromatography coupled to Electrospray Ionisation and Quadrupole Time-of-Flight Mass Spectrometry (HPLC-ESIQTOF-MS/MS) were employed for this purpose. To guarantee aim 2, we studied the effect of the isolated flavonoids on matrix metalloproteinases (MMPs) -9 and -2 in murine macrophages. Molecular docking was initially performed to assess the binding affinity of the isolated flavonoids to the active site of MMP-9. Results and discussion: In silico model was a powerful tool to predict the compounds that could strongly bind and inhibit MMPs. CC extract and tea have shown to possess a significant antioxidant and anti-inflammatory effect, which can partially explain their traditional medicinal use.

3.
Plants (Basel) ; 11(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36235383

RESUMEN

In this study, GC and GC-MS analysis of the essential oil obtained from the leaves of Saudi Arabian Capparis cartilaginea Decne. (CC) allowed for the identification of 41 constituents, comprising 99.99% of the total oil composition. The major compounds identified were isopropyl isothiocyanate (31.0%), 2-methylbutanenitrile (21.4%), 2-butyl isothiocyanate (18.1%), isobutyronitrile (15.4%), and 3-methylbutanenitrile (8.2%). The chemical composition of the derived oil and 12 additional oils obtained from selected Capparis taxa were compared using multivariate analyses including principal component analysis (PCA) and agglomerative hierarchical cluster analysis (AHC). The results of the statistical analyses of this particular data set pointed out that isopropyl isothiocyanate could be potentially used as a valuable infrageneric chemotaxonomical marker for CC. Moreover, the results distinctly separate CC from other members of its genus on the basis of its components. In addition, environmental and geographical stressors may be implicated in the essential oil profile of plants found within the genus Capparis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...