Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 282, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710420

RESUMEN

BACKGROUND: Nanotopographical cues play a critical role as drivers of mesenchymal stem cell differentiation. Nanowire scaffolds, in this regard, provide unique and adaptable nanostructured surfaces with focal points for adhesion and with elastic properties determined by nanowire stiffness. RESULTS: We show that a scaffold of nanowires, which are remotely actuated by a magnetic field, mechanically stimulates mesenchymal stem cells. Osteopontin, a marker of osteogenesis onset, was expressed after cells were cultured for 1 week on top of the scaffold. Applying a magnetic field significantly boosted differentiation due to mechanical stimulation of the cells by the active deflection of the nanowire tips. The onset of differentiation was reduced to 2 days of culture based on the upregulation of several osteogenesis markers. Moreover, this was observed in the absence of any external differentiation factors. CONCLUSIONS: The magneto-mechanically modulated nanosurface enhanced the osteogenic differentiation capabilities of mesenchymal stem cells, and it provides a customizable tool for stem cell research and tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas , Nanocables , Diferenciación Celular , Células Cultivadas , Osteogénesis/fisiología , Ingeniería de Tejidos , Andamios del Tejido
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2202-2205, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018444

RESUMEN

In-vitro transfection of cells by electroporation is a widely used approach in cell biology and medicine. The transfection method is highly dependent on the cell culture's electrical resistance, which is strongly determined by differences in the membranes, but also on the morphology of the electrodes. Microneedle (MN)-based electrodes have been used to concentrate the electrical field during electroporation, and therefore maximize its effect on cell membrane permeability. So far, the methods used for the fabrication of MN electrodes have been relatively limited with respect to the needle design. In this work, we provide a method to fabricate MNs using 3D printing, which is a technology that provides a high degree of flexibility with respect to geometry and dimensions. Pyramidal-shaped MN designs were fabricated and tested on HCT116 cancer cells. Customization of the tips of the pyramids permits tailoring of the electrical field in the vicinity of the cell membranes. The fabricated device enables low-voltage (2 V) electroporation, eliminating the need for the use of specialized chemical buffers. The results show the potential of this method, which can be exploited and optimized for many different applications, and offer a very accessible approach for in-vitro electroporation and cell studies. The MNs can be customized to create complex structures, for example, for a multi-culture cell environment.


Asunto(s)
Sistemas de Liberación de Medicamentos , Electroporación , Agujas , Impresión Tridimensional , Transfección
3.
J Vis Exp ; (161)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32744515

RESUMEN

Magnetic nanomaterials have received great attention in different biomedical applications. Biofunctionalizing these nanomaterials with specific targeting agents is a crucial aspect to enhance their efficacy in diagnostics and treatments while minimizing the side effects. The benefit of magnetic nanomaterials compared to non-magnetic ones is their ability to respond to magnetic fields in a contact-free manner and over large distances. This allows to guide or accumulate them, while they can also be monitored. Recently, magnetic nanowires (NWs) with unique features were developed for biomedical applications. The large magnetic moment of these NWs enables a more efficient remote control of their movement by a magnetic field. This has been utilized with great success in cancer treatment, drug delivery, cell tracing, stem cell differentiation or magnetic resonance imaging. In addition, the NW fabrication by template-assisted electrochemical deposition provides a versatile method with tight control over the NW properties. Especially iron NWs and iron-iron oxide (core-shell) NWs are suitable for biomedical applications, due to their high magnetization and low toxicity. In this work, we provide a method to biofunctionalize iron/iron oxide NWs with specific antibodies directed against a specific cell surface marker that is overexpressed in a large number of cancer cells. Since the method utilizes the properties of the iron oxide surface, it is also applicable to superparamagnetic iron oxide nanoparticles. The NWs are first coated with 3-aminopropyl-tri-ethoxy-silane (APTES) acting as a linker, which the antibodies are covalently attached to. The APTES coating and the antibody biofunctionalization are proven by electron energy loss spectroscopy (EELS) and zeta potential measurements. In addition, the antigenicity of the antibodies on the NWs is tested by using immunoprecipitation and western blot. The specific targeting of the biofunctionalized NWs and their biocompatibility are studied by confocal microscopy and a cell viability assay.


Asunto(s)
Magnetismo/métodos , Nanoestructuras/química , Sistemas de Liberación de Medicamentos/métodos , Humanos
4.
Glob Chall ; 4(4): 2000001, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32257383

RESUMEN

While the outstanding properties of graphene have attracted a lot of attention, one of the major bottlenecks of its widespread usage is its availability in large volumes. Laser printing graphene on polyimide films is an efficient single-step fabrication process that can remedy this issue. A laser-printed, flexible pressure sensor is developed utilizing the piezoresistive effect of 3D porous graphene. The pressure sensors performance can be easily adjusted via the geometrical parameters. They have a sensitivity in the range of 1.23 × 10-3 kPa and feature a high resolution with a detection limit of 10 Pa in combination with an extremely wide dynamic range of at least 20 MPa. They also provide excellent long-term stability of at least 15 000 cycles. The biocompatibility of laser-induced graphene is also evaluated by cytotoxicity assays and fluorescent staining, which show an insignificant drop in viability. Polymethyl methacrylate coating is particularly useful for underwater applications, protecting the sensors from biofouling and shunt currents, and enable operation at a depth of 2 km in highly saline Red Sea water. Due to its features, the sensors are a prime choice for multiple healthcare applications; for example, they are used for heart rate monitoring, plantar pressure measurements, and tactile sensing.

5.
ACS Appl Bio Mater ; 3(8): 4789-4797, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021725

RESUMEN

Conventional chemotherapy and radiation therapy are often insufficient in eliminating cancer and are accompanied by severe side effects, due to a lack in the specificity of their targeting. Magnetic iron nanowires have made a great contribution to the nanomedicine field because of their low toxicity and ease of manipulation with the magnetic field. Recently, they have been used in magnetic resonance imaging and wireless magnetomechanical and photothermal treatments. The addition of active targeting moieties to these nanowires thus creates a multifunctional tool that can boost therapeutic efficacies through the combination of different treatments toward a specific target. Colon cancer is the third most commonly occurring cancer, and 90 ± 2.5% of colon cancer cells express the glycoprotein CD44. Iron nanowires with an iron oxide surface are biocompatible, multifunctional materials that can be controlled by magnetic fields and heated by laser irradiation. Here, they were functionalized with anti-CD44 antibodies and used in a combination therapy that included magnetomechanical and photothermal treatments on colon cancer cells. The functionalization resulted in a 3-fold increase of nanowire internalization in colon cancer cells compared to control cells and did not affect the antigenicity and magnetic properties. It also increased the efficacy of killing from 35 ± 1% to more than 71 ± 2%, showing that the combination therapy was more effective than individual therapies alone.

6.
Sci Rep ; 6: 35786, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775082

RESUMEN

Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects.


Asunto(s)
Muerte Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Nanocables/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Magnetismo/métodos , Propilaminas/administración & dosificación , Albúmina Sérica Bovina/administración & dosificación , Silanos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...