Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(3): 2786-2797, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35097275

RESUMEN

In the present work, the aim is to synthesize reduced graphene oxide (rGO) and zinc:reduced graphene oxide composite catalysts (ZnO:rGO) for esterification of acetic acid with n-heptanol. The physical and chemical characteristics of the rGO and rGO-metal oxide composite catalysts such as textural surface characteristics, surface morphology, thermal stability, functional groups, and elemental analysis were studied. The surface areas of rGO, ZnO(0.5 M), and ZnO(1 M) were recorded, respectively, at 31.72, 27.65, and 36.19 m2 g-1. Furthermore, esterification reaction parameters such as the reaction time, catalyst dosage, and reaction temperature for acetic acid were optimized to check the feasibility of rGO-metal oxide composites for a better conversion percentage of acetic acid. The optimized catalyst was selected for further optimization, and the optimum reaction parameters found were 0.1 wt % of catalyst, 160 min reaction duration, and 100 °C reaction temperature with a maximal yield of 100%. At 110 °C, the reaction conducted in the presence of 0.1 g of catalyst displayed more yield than the uncatalyzed reaction.

2.
Molecules ; 25(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339423

RESUMEN

The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2-sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV-Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric-derivative thermogravimetric analysis, indicating its stability up to 95 °C.


Asunto(s)
Benzaldehídos/química , Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Enlace de Hidrógeno , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
3.
Sci Rep ; 10(1): 20229, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214687

RESUMEN

Herein, a facile green synthesis route was reported for the synthesis of Ag-ZnO nanocomposites using potato residue by simple and cost effective combustion route and investigated the photocatalytic degradation of methylene blue (MB) dye. In the preparation potato extract functioned as a biogenic reducing as well as stabilizing agent for the reduction of Ag + , thus eliminating the need for conventional reducing/stabilizing agents. Ag-ZnO nanocomposites with different Ag mass fractions ranging from 2 to 10% were characterized by using XRD, FT-IR, XPS, SEM, TEM, and UV-Vis spectroscopy. XRD analysis revealed that the as prepared Ag-ZnO nanocomposites possessed high crystallinity with hexagonal wurtzite structure. TEM and SEM images showed that the Ag-ZnO nanocomposites in size ranging from 15 to 25 nm have been obtained, and the particle size was found to increase with the increase in percentage of Ag. FTIR results confirmed the characteristics band of ZnO along with the Ag bands. XPS analysis revealed a pair of doublet with peaks corresponding to Ag and a singlet with peaks corresponding to ZnO. With the increase of concentration of Ag in ZnO, the intensity of NBE emission in the PL spectra was observed to be decrease, resulted to the high photocatalytic activity. Photocatalytic properties of Ag-ZnO nanocomposites evaluated against the MB dye under visible-light irradiation showed superior photodegradation of ~ 96% within 80 min for 2% Ag-ZnO nanocomposites. The apparent reaction rate constant for 2% Ag-ZnO nanocomposites was higher than that of other nanocomposites, which proved to be the best photocatalyst for the maximum degradation of MB. Furthermore, various functional parameters such as dosing, reaction medium, concentration variation were performed on it for better understanding. The enhancement in photocatalytic degradation might be due to the presence of Ag nanoparticles on the surface of ZnO by minimizing the recombination of photo induced charge carriers in the nanocomposites.

4.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233673

RESUMEN

A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution. The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis analysis. The XRD result supported the construction of two octahedral and one square pyramid geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis (HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a 3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.


Asunto(s)
Complejos de Coordinación , Cadmio/química , Catálisis , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cobre/química , Modelos Moleculares , Oxidación-Reducción
5.
RSC Adv ; 10(58): 35407-35418, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35515658

RESUMEN

Nickel(ii)dibenzotetramethyltetraaza[14]annulene complex (Nitmtaa) was synthetized and immobilized on post amino-functionalized SBA-15 (N-SBA-15) to obtain a stable and reusable nanocatalyst named as Nitmtaa@N-SBA-15. Here (3-aminopropyl)triethoxysilane (APTES) was first grafted on the surface SBA-15, then Nitmtaa was added and coordinated on the silica surface via APTES amine groups. The structure and morphology, and thermal stability of the prepared nanocatalyst was investigated using SEM, HR-TEM, BET, FT-IR, powder XRD, and TGA. HR-TEM and XRD results revealed a high dispersion of Nitmtaa on the SBA-15 surface. The catalytic activity of this nanocatalyst was evaluated in the epoxidation of styrene, under ambient conditions, using meta-chloroperoxybenzoic acid (m-CPBA) as the oxygen donor. This nanocatalyst showed an immediate and quantitative epoxidation of styrene with high turn-over-frequency ∼31.58 s-1. Moreover, the superior catalytic activity and high stability of Nitmtaa@N-SBA-15 could be maintained after four successive cycles. A possible reaction mechanism is also proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA