Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(5): 1066-1081, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630468

RESUMEN

Human ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, has been shown to play an essential role in the metabolic reprogramming and progression of hepatocellular carcinoma (HCC). HCC accounts for approximately 75% of primary liver cancers and is within the top three causes of cancer death worldwide. As a result of treatment limitations, the overall 5-year survival rate for all patients with HCC is under 20%. The prevalence of HCC necessitates continued development of novel and effective treatment methods. In recent years, the therapeutic potential of selective inactivation of hOAT has been demonstrated for the treatment of HCC. Inspired by previous increased selectivity for hOAT by the expansion of the cyclopentene ring scaffold to a cyclohexene, we designed, synthesized, and evaluated a series of novel fluorinated cyclohexene analogues and identified (R)-3-amino-5,5-difluorocyclohex-1-ene-1-carboxylic acid as a time-dependent inhibitor of hOAT. Structural and mechanistic studies have elucidated the mechanism of inactivation of hOAT by 5, resulting in a PLP-inactivator adduct tightly bound to the active site of the enzyme. Intact protein mass spectrometry, 19F NMR spectroscopy, transient state kinetic studies, and X-ray crystallography were used to determine the structure of the final adduct and elucidate the mechanisms of inactivation. Interestingly, despite the highly electrophilic intermediate species conferred by fluorine and structural evidence of solvent accessibility in the hOAT active site, Lys292 and water did not participate in nucleophilic addition during the inactivation mechanism of hOAT by 5. Instead, rapid aromatization to yield the final adduct was favored.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Ornitina-Oxo-Ácido Transaminasa , Humanos , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Ornitina-Oxo-Ácido Transaminasa/química , Ornitina-Oxo-Ácido Transaminasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/farmacología , Ciclohexenos/química , Ciclohexenos/síntesis química , Ciclohexenos/farmacología , Ciclohexenos/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Cristalografía por Rayos X , Modelos Moleculares
2.
Arch Biochem Biophys ; 748: 109772, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820757

RESUMEN

Dihydropyrimidine dehydrogenase (DPD) is an enzyme that uses an elaborate architecture to catalyze a simple net reaction: the reduction of the vinylic bond of uracil and thymine. Known DPDs have two active sites separated by approximately 60 Å. One active site has an FAD cofactor and binds NAD(P) and the other has an FMN cofactor and binds pyrimidines. The intervening distance is spanned by four Fe4S4 centers that act as an electron conduit. Recent advancements with porcine DPD have revealed unexpected chemical sequences where the enzyme undergoes reductive activation by transferring two electrons from NADPH to the FMN via the FAD such that the active form has the cofactor set FAD•4(Fe4S4)•FMNH2. Here we describe the first comprehensive kinetic investigation of a bacterial form of DPD. Using primarily transient state methods, DPD from E. coli (EcDPD) was shown to have a similar mechanism to that observed with the mammalian form in that EcDPD is observed to undergo reductive activation before pyrimidine reduction and displays half-of-sites activity. However, two distinct aspects of the EcDPD reaction relative to the mammalian enzyme were observed that relate to the effector roles for substrates: (i) the enzyme will rapidly take up electrons from NADH, reducing a flavin in the absence of pyrimidine substrate, and (ii) the activated form of the enzyme can become fully oxidized by transferring electrons to pyrimidine substrates in the absence of NADH.


Asunto(s)
Escherichia coli , NAD , Porcinos , Animales , NAD/metabolismo , Dihidrouracilo Deshidrogenasa (NADP)/química , Cinética , Uracilo , Mamíferos/metabolismo , Oxidación-Reducción , Flavina-Adenina Dinucleótido/química
3.
Biochemistry ; 62(9): 1497-1508, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071546

RESUMEN

Thioredoxin/glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both oxidized thioredoxin and glutathione with electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH). SmTGR is a drug target for the treatment of Schistosomiasis, an infection caused by Schistosoma platyhelminths residing in the blood vessels of the host. Schistosoma spp. are reliant on TGR enzymes as they lack catalase and so use reduced thioredoxin and glutathione to regenerate peroxiredoxins consumed in the detoxification of reactive oxygen species. SmTGR is a flavin adenine dinucleotide (FAD)-dependent enzyme, and we have used the flavin as a spectrophotometric reporter to observe the movement of electrons within the enzyme. The data show that NADPH fractionally reduces the active site flavin with an observed rate constant estimated in this study to be ∼3000 s-1. The flavin then reoxidizes by passing electrons at a similar rate to the proximal Cys159-Cys154 disulfide pair. The dissociation of NADP+ occurs with a rate of ∼180 s-1, which induces the deprotonation of Cys159, and this coincides with the accumulation of an intense FAD-thiolate charge transfer band. It is proposed that the electrons then pass to the Cys596-Cys597 disulfide pair of the associated subunit in the dimer with a net rate constant of ∼2 s-1. (Note: Cys597 is Sec597 in wild-type (WT) SmTGR.) From this position, the electrons can be passed to oxidized thioredoxin or further into the protein to reduce the Cys28-Cys31 disulfide pair of the originating subunit of the dimer. From the Cys28-Cys31 center, electrons can then pass to oxidized glutathione that has a binding site directly adjacent.


Asunto(s)
Flavina-Adenina Dinucleótido , Schistosoma mansoni , Animales , Schistosoma mansoni/metabolismo , Glutatión Reductasa/metabolismo , NADP/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Glutatión/metabolismo , Disulfuros , Tiorredoxinas/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...