Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37896735

RESUMEN

Internet security is a major concern these days due to the increasing demand for information technology (IT)-based platforms and cloud computing. With its expansion, the Internet has been facing various types of attacks. Viruses, denial of service (DoS) attacks, distributed DoS (DDoS) attacks, code injection attacks, and spoofing are the most common types of attacks in the modern era. Due to the expansion of IT, the volume and severity of network attacks have been increasing lately. DoS and DDoS are the most frequently reported network traffic attacks. Traditional solutions such as intrusion detection systems and firewalls cannot detect complex DDoS and DoS attacks. With the integration of artificial intelligence-based machine learning and deep learning methods, several novel approaches have been presented for DoS and DDoS detection. In particular, deep learning models have played a crucial role in detecting DDoS attacks due to their exceptional performance. This study adopts deep learning models including recurrent neural network (RNN), long short-term memory (LSTM), and gradient recurrent unit (GRU) to detect DDoS attacks on the most recent dataset, CICDDoS2019, and a comparative analysis is conducted with the CICIDS2017 dataset. The comparative analysis contributes to the development of a competent and accurate method for detecting DDoS attacks with reduced execution time and complexity. The experimental results demonstrate that models perform equally well on the CICDDoS2019 dataset with an accuracy score of 0.99, but there is a difference in execution time, with GRU showing less execution time than those of RNN and LSTM.

2.
Sensors (Basel) ; 23(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37420546

RESUMEN

Recent developments in quantum computing have shed light on the shortcomings of the conventional public cryptosystem. Even while Shor's algorithm cannot yet be implemented on quantum computers, it indicates that asymmetric key encryption will not be practicable or secure in the near future. The National Institute of Standards and Technology (NIST) has started looking for a post-quantum encryption algorithm that is resistant to the development of future quantum computers as a response to this security concern. The current focus is on standardizing asymmetric cryptography that should be impenetrable by a quantum computer. This has become increasingly important in recent years. Currently, the process of standardizing asymmetric cryptography is coming very close to being finished. This study evaluated the performance of two post-quantum cryptography (PQC) algorithms, both of which were selected as NIST fourth-round finalists. The research assessed the key generation, encapsulation, and decapsulation operations, providing insights into their efficiency and suitability for real-world applications. Further research and standardization efforts are required to enable secure and efficient post-quantum encryption. When selecting appropriate post-quantum encryption algorithms for specific applications, factors such as security levels, performance requirements, key sizes, and platform compatibility should be taken into account. This paper provides helpful insight for post-quantum cryptography researchers and practitioners, assisting in the decision-making process for selecting appropriate algorithms to protect confidential data in the age of quantum computing.


Asunto(s)
Seguridad Computacional , Metodologías Computacionales , Teoría Cuántica , Algoritmos , Computadores
3.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420557

RESUMEN

Traffic accidents present significant risks to human life, leading to a high number of fatalities and injuries. According to the World Health Organization's 2022 worldwide status report on road safety, there were 27,582 deaths linked to traffic-related events, including 4448 fatalities at the collision scenes. Drunk driving is one of the leading causes contributing to the rising count of deadly accidents. Current methods to assess driver alcohol consumption are vulnerable to network risks, such as data corruption, identity theft, and man-in-the-middle attacks. In addition, these systems are subject to security restrictions that have been largely overlooked in earlier research focused on driver information. This study intends to develop a platform that combines the Internet of Things (IoT) with blockchain technology in order to address these concerns and improve the security of user data. In this work, we present a device- and blockchain-based dashboard solution for a centralized police monitoring account. The equipment is responsible for determining the driver's impairment level by monitoring the driver's blood alcohol concentration (BAC) and the stability of the vehicle. At predetermined times, integrated blockchain transactions are executed, transmitting data straight to the central police account. This eliminates the need for a central server, ensuring the immutability of data and the existence of blockchain transactions that are independent of any central authority. Our system delivers scalability, compatibility, and faster execution times by adopting this approach. Through comparative research, we have identified a significant increase in the need for security measures in relevant scenarios, highlighting the importance of our suggested model.


Asunto(s)
Cadena de Bloques , Conducir bajo la Influencia , Internet de las Cosas , Humanos , Accidentes de Tránsito/prevención & control , Nivel de Alcohol en Sangre
4.
Sensors (Basel) ; 23(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37299993

RESUMEN

Internet of Things (IoT) has made significant strides in energy management systems recently. Due to the continually increasing cost of energy, supply-demand disparities, and rising carbon footprints, the need for smart homes for monitoring, managing, and conserving energy has increased. In IoT-based systems, device data are delivered to the network edge before being stored in the fog or cloud for further transactions. This raises worries about the data's security, privacy, and veracity. It is vital to monitor who accesses and updates this information to protect IoT end-users linked to IoT devices. Smart meters are installed in smart homes and are susceptible to numerous cyber attacks. Access to IoT devices and related data must be secured to prevent misuse and protect IoT users' privacy. The purpose of this research was to design a blockchain-based edge computing method for securing the smart home system, in conjunction with machine learning techniques, in order to construct a secure smart home system with energy usage prediction and user profiling. The research proposes a blockchain-based smart home system that can continuously monitor IoT-enabled smart home appliances such as smart microwaves, dishwashers, furnaces, and refrigerators, among others. An approach based on machine learning was utilized to train the auto-regressive integrated moving average (ARIMA) model for energy usage prediction, which is provided in the user's wallet, to estimate energy consumption and maintain user profiles. The model was tested using the moving average statistical model, the ARIMA model, and the deep-learning-based long short-term memory (LSTM) model on a dataset of smart-home-based energy usage under changing weather conditions. The findings of the analysis reveal that the LSTM model accurately forecasts the energy usage of smart homes.


Asunto(s)
Cadena de Bloques , Internet de las Cosas , Aprendizaje Automático , Memoria a Largo Plazo , Microondas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...