Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(41): 38394-38405, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867686

RESUMEN

A variety of 3-(4-chlorophenyl) acrylic acids 4a,b and 3-(4-chlorophenyl)acrylate esters 5a-i were synthesized and structurally proven by spectroscopic studies such as IR, 1H NMR, and 13C NMR as well as mass spectrometry. All substances were investigated for their antiproliferative efficacy against the MDA-MB-231 cell line. Among these, acrylic acid compound 4b demonstrated the most potent cytotoxic effect with an IC50 value of 3.24 ± 0.13 µM, as compared to CA-4 (IC50 = 1.27 ± 09 µM). Additionally, acrylic acid molecule 4b displayed an inhibitory effect against ß-tubulin polymerization with a percentage inhibition of 80.07%. Furthermore, compound 4b was found to produce considerable cell cycle arrest at the G2/M stage and cellular death, as demonstrated by FACS analysis. In addition, the in vivo antitumor screening of the sodium salt of acrylic acid 4b was carried out, and the results have shown that the tested molecule showed a significant decrease in viable EAC count and EAC volume, accompanied by a considerable increase in the life span prolongation, if compared to the positive control group. Furthermore, molecular modeling studies were performed to understand how the highly efficient chemicals 4b and 5e interact with the colchicine-binding region on tubulin. This work aims to shed light on the reasons behind their exceptional cytotoxicity and their better capacity to inhibit tubulin in comparison to CA-4.

2.
Biomedicines ; 11(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37626750

RESUMEN

Cyclin dependent kinase inhibitor 2A (CDKN2A) is a well-known tumor suppressor gene as it functions as a cell cycle regulator. While several reports correlate the malfunction of CDKN2A with the initiation and progression of several types of human tumors, there is a lack of a comprehensive study that analyzes the potential effect of CDKN2A genetic alterations on the human immune components and the consequences of that effect on tumor progression and patient survival in a pan-cancer model. The first stage of the current study was the analysis of CDKN2A differential expression in tumor tissues and the corresponding normal ones and correlating that with tumor stage, grade, metastasis, and clinical outcome. Next, a detailed profile of CDKN2A genetic alteration under tumor conditions was described and assessed for its effect on the status of different human immune components. CDKN2A was found to be upregulated in cancerous tissues versus normal ones and that predicted the progression of tumor stage, grade, and metastasis in addition to poor prognosis under different forms of tumors. Additionally, CDKN2A experienced different forms of genetic alteration under tumor conditions, a characteristic that influenced the infiltration and the status of CD8, the chemokine CCL4, and the chemokine receptor CCR6. Collectively, the current study demonstrates the potential employment of CDKN2A genetic alteration as a prognostic and immunological biomarker under several types of human cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA