Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chem Rec ; 23(5): e202200171, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37066717

RESUMEN

Graphitic carbon nitride (g-C3 N4 ) has gained tremendous interest in the sector of power transformation and retention, because of its distinctive stacked composition, adjustable electronic structure, metal-free feature, superior thermodynamic durability, and simple availability. Furthermore, the restricted illumination and extensive recombination of photoexcitation electrons have inhibited the photocatalytic performance of pure g-C3 N4 . The dimensions of g-C3 N4 may impact the field of electronics confinement; as a consequence, g-C3 N4 with varying dimensions shows unique features, making it appropriate for a number of fascinating uses. Even if there are several evaluations emphasizing on the fabrication methods and deployments of g-C3 N4 , there is certainly an insufficiency of a full overview, that exhaustively depicts the synthesis and composition of diverse aspects of g-C3 N4 . Consequently, from the standpoint of numerical simulations and experimentation, several legitimate methodologies were employed to deliberately develop the photocatalyst and improve the optimal result, including elements loading, defects designing, morphological adjustment, and semiconductors interfacing. Herein, this evaluation initially discusses different dimensions, the physicochemical features, modifications and interfaces design development of g-C3 N4 . Emphasis is given to the practical design and development of g-C3 N4 for the various power transformation and inventory applications, such as photocatalytic H2 evolution, photoreduction of CO2 source, electrocatalytic H2 evolution, O2 evolution, O2 reduction, alkali-metal battery cells, lithium-ion batteries, lithium-sulfur batteries, and metal-air batteries. Ultimately, the current challenges and potential of g-C3 N4 for fuel transformation and retention activities are explored.

2.
J Am Chem Soc ; 139(35): 12125-12128, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28817269

RESUMEN

The use of two primary alkylamine functionalities covalently tethered to the linkers of IRMOF-74-III results in a material that can uptake CO2 at low pressures through a chemisorption mechanism. In contrast to other primary amine-functionalized solid adsorbents that uptake CO2 primarily as ammonium carbamates, we observe using solid state NMR that the major chemisorption product for this material is carbamic acid. The equilibrium of reaction products also shifts to ammonium carbamate when water vapor is present; a new finding that has impact on control of the chemistry of CO2 capture in MOF materials and one that highlights the importance of geometric constraints and the mediating role of water within the pores of MOFs.

3.
Adv Mater ; 29(13)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28145598

RESUMEN

Solution-processed polymer organic light-emitting diodes (OLEDs) doped with triplet-triplet annihilation (TTA)-upconversion molecules, including 9,10-diphenylanthracene, perylene, rubrene and TIPS-pentacene, are reported. The fraction of triplet-generated electroluminescence approaches the theoretical limit. Record-high efficiencies in solution-processed OLEDs based on these materials are achieved. Unprecedented solid-state TTA-upconversion quantum yield of 23% (TTA-upconversion reaction efficiency of 70%) at electrical excitation well below one-sun equivalent is observed.

4.
J Phys Chem Lett ; 7(4): 693-7, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26822061

RESUMEN

This study explores the effect of substitution of selenium (Se) for sulfur (S) on the photophysical properties of a series of π-conjugated donor-acceptor-donor chromophores based on 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (TBT). The effect of Se substitution is studied systematically, where the substitution is in the thiophene donors only, the benzothiadiazole acceptor only, and in all of the positions. The fluorescence quantum yield decreases with an increase in Se substitution. Nanosecond-microsecond transient absorption and singlet oxygen sensitization experiments show that the effect of Se is due to an increase in the rate and efficiency of intersystem crossing with increased Se substitution. The relationship between intersystem crossing efficiency and heteroatom substitution pattern shows that the effects are largest when the heavy atom Se is in the acceptor benzothiadiazole unit. DFT calculations support the hypothesis that the effect arises because the LUMO is concentrated in the acceptor moiety, enhancing the spin-orbit coupling effect imparted by the Se atom.


Asunto(s)
Selenio/química , Fluorescencia , Teoría Cuántica
5.
Dalton Trans ; 44(7): 3176-84, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25578774

RESUMEN

A series of metallo Ru(ii), Fe(ii), Co(ii) bisterpyridine polymers were prepared with naphthalene diimide (NDI) groups inserted between two 4'-phenyl-2,2:6',2''-terpyridine (phtpy) groups. Core-substituted NDIs typically have long-lived excited states with relatively high quantum yields, yet the NDI emission in these metallopolymers was completely quenched, most likely because of efficient electron-transfer from the M(phtpy)2(2+) groups to the excited NDIs. AFM, TEM and SEM experiments indicate that the regiochemistry of the substitution on the core of the naphthalene diimide, together with coordination of the terpyridine ligand to different metals, strongly influences the morphologies of the resulting metallosupramolecular polymers. The morphologies of spin-coated samples of the para-substituted polymers revealed the formation of long, bundled nanorods. Lengths on the order of ∼8 µm were observed for the bundle of the longest polymers (-Ru) by both AFM and TEM microscopy. The morphologies of the meta substituted polymers, on the other hand, exhibited significantly shorter and less well-defined morphologies.

6.
Adv Energy Mater ; 4(8): 1301544, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26225131

RESUMEN

Colloidal quantum dot solar cells (CQDSCs) are attracting growing attention owing to significant improvements in efficiency. However, even the best depleted-heterojunction CQDSCs currently display open-circuit voltages (VOCs) at least 0.5 V below the voltage corresponding to the bandgap. We find that the tail of states in the conduction band of the metal oxide layer can limit the achievable device efficiency. By continuously tuning the zinc oxide conduction band position via magnesium doping, we probe this critical loss pathway in ZnO-PbSe CQDSCs and optimize the energetic position of the tail of states, thereby increasing both the VOC (from 408 mV to 608 mV) and the device efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...