Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 210(11): 1641-1652, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058108

RESUMEN

IL-6 family members contribute to host defense through the stimulation of acute-phase signaling, hematopoiesis, immune reactions, and regenerative processes. To investigate essential mechanisms that are linked toward a constitutively activated gp130 signaling, we generated and characterized a mouse model that reflects a constitutive and cytokine-independent activation of JAK/STAT3 signaling by Lgp130 in CD4- and CD8-positive T cells. Lgp130 is an engineered form of gp130 in which dimerization and activation are forced by a leucine zipper. T cell-specific Lgp130 activation resulted in massive phenotypical abnormalities, including splenomegaly, lymphadenopathy, and an upregulation of innate immune system components shown by hyperinflammatory signatures in several organs. Moreover, T cell-restricted expression of Lgp130 resulted in increased numbers of cytotoxic and regulatory T cells, especially in lymph nodes. Consistent with this, we found an elevated platelet production and increase in megakaryocytes in the spleen and bone marrow that are causative for an acute thrombocytosis accompanied by anemia. Due to a shortened life span of T cell-specific Lgp130 mice, we could also show that next to an overall increase in regulatory cell-cycle genes, an activation of p53 and increased expression of p21 provide evidence for a senescence-like phenotype. Together, these data suggest that T cell-restricted gp130 activation is not only involved in autoimmune processes but also in senescence-associated aging. Therefore, Lgp130 expression in T cells might be a suitable model to study inflammation and disease.


Asunto(s)
Envejecimiento Prematuro , Animales , Ratones , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Hematopoyesis , Bazo/metabolismo , Factor de Transcripción STAT3/metabolismo
2.
J Clin Invest ; 133(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36943408

RESUMEN

Plasma IL-6 is elevated after myocardial infarction (MI) and is associated with increased morbidity and mortality. Which cardiac cell type preferentially contributes to IL-6 expression and how its production is regulated are largely unknown. Here, we studied the cellular source and purinergic regulation of IL-6 formation in a murine MI model. We found that IL-6, measured in various cell types in post-MI hearts at the protein level and by quantitative PCR and RNAscope, was preferentially formed by cardiac fibroblasts (CFs). Single-cell RNA-Seq (scRNA-Seq) in infarcted mouse and human hearts confirmed this finding. We found that adenosine stimulated fibroblast IL-6 formation via the adenosine receptor A2bR in a Gq-dependent manner. CFs highly expressed Adora2b and rapidly degraded extracellular ATP to AMP but lacked CD73. In mice and humans, scRNA-Seq revealed that Adora2B was also mainly expressed by fibroblasts. We assessed global IL-6 production in isolated hearts from mice lacking CD73 on T cells (CD4-CD73-/-), a condition known to be associated with adverse cardiac remodeling. The ischemia-induced release of IL-6 was strongly attenuated in CD4-CD73-/- mice, suggesting adenosine-mediated modulation. Together, these findings demonstrate that post-MI IL-6 was mainly derived from activated CFs and was controlled by T cell-derived adenosine. We show that purinergic metabolic cooperation between CFs and T cells is a mechanism that modulates IL-6 formation by the heart and has therapeutic potential.


Asunto(s)
Fibroblastos , Interleucina-6 , Infarto del Miocardio , Linfocitos T , Animales , Humanos , Ratones , Adenosina/metabolismo , Fibroblastos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Linfocitos T/metabolismo
3.
J Mol Cell Cardiol ; 175: 29-43, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36493853

RESUMEN

Regenerating the injured heart remains one of the most vexing challenges in cardiovascular medicine. Cell therapy has shown potential for treatment of myocardial infarction, but low cell retention so far has limited its success. Here we show that intramyocardial injection of highly apoptosis-resistant unrestricted somatic stem cells (USSC) into infarcted rat hearts resulted in an unprecedented thickening of the left ventricular wall with cTnT+/BrdU+ cardiomyocytes that was paralleled by progressively restored ejection fraction. USSC induced significant T-cell enrichment in ischemic tissue with enhanced expression of T-cell related cytokines. Inhibition of T-cell activation by anti-CD28 monoclonal antibody, fully abolished the regenerative response which was restored by adoptive T-cell transfer. Secretome analysis of USSC and lineage tracing studies suggest that USSC secrete paracrine factors over an extended period of time which boosts a T-cell driven endogenous regenerative response mainly from adult cardiomyocytes.


Asunto(s)
Células Madre Adultas , Infarto del Miocardio , Ratas , Animales , Linfocitos T , Infarto del Miocardio/terapia , Miocitos Cardíacos , Citocinas
4.
Front Immunol ; 13: 856230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464417

RESUMEN

Beauvericin (BEA), a mycotoxin of the enniatin family produced by various toxigenic fungi, has been attributed multiple biological activities such as anti-cancer, anti-inflammatory, and anti-microbial functions. However, effects of BEA on dendritic cells remain unknown so far. Here, we identified effects of BEA on murine granulocyte-macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow derived dendritic cells (BMDCs) and the underlying molecular mechanisms. BEA potently activates BMDCs as signified by elevated IL-12 and CD86 expression. Multiplex immunoassays performed on myeloid differentiation primary response 88 (MyD88) and toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon beta (TRIF) single or double deficient BMDCs indicate that BEA induces inflammatory cytokine and chemokine production in a MyD88/TRIF dependent manner. Furthermore, we found that BEA was not able to induce IL-12 or IFNß production in Toll-like receptor 4 (Tlr4)-deficient BMDCs, whereas induction of these cytokines was not compromised in Tlr3/7/9 deficient BMDCs. This suggests that TLR4 might be the functional target of BEA on BMDCs. Consistently, in luciferase reporter assays BEA stimulation significantly promotes NF-κB activation in mTLR4/CD14/MD2 overexpressing but not control HEK-293 cells. RNA-sequencing analyses further confirmed that BEA induces transcriptional changes associated with the TLR4 signaling pathway. Together, these results identify TLR4 as a cellular BEA sensor and define BEA as a potent activator of BMDCs, implying that this compound can be exploited as a promising candidate structure for vaccine adjuvants or cancer immunotherapies.


Asunto(s)
Micotoxinas , Receptor Toll-Like 4 , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Citocinas/metabolismo , Células Dendríticas , Depsipéptidos , Células HEK293 , Humanos , Interleucina-12/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo
5.
EBioMedicine ; 73: 103616, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34666225

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that leads to a breakdown of tolerance to self-antigens resulting in inflammation and organ damage. The anti-inflammatory activity of CD73-derived adenosine is well documented, however, its role in SLE pathogenesis is unknown. METHODS: Human peripheral blood immune cells were obtained from adult SLE patients (SLE) and healthy controls (HC). Expression and activity of purinergic ectoenzymes were assessed by qRT-PCR, flow cytometry and HPLC. Genes encoding purinergic ectoenzymes in SLE patients were analysed with targeted DNA sequencing. FINDINGS: Among circulating immune cells (both in HC and SLE), CD73 was most highly expressed on B cells, which was mirrored by high enzymatic activity only in HC. CD73 protein molecular weight was unchanged in SLE, however, the enzymatic activity of CD73 on SLE B cells was almost fully abolished. Accordingly, AMP accumulated in cultured SLE B cells. A similar discrepancy between protein expression and enzymatic activity was observed for NAD-degrading CD38 on SLE B cells. No differences were found in the rate of extracellular ATP degradation and expression of CD39, CD203a/c, and CD157. DNA sequencing identified no coding variants in CD73 in SLE patients. INTERPRETATION: We describe a new pathomechanism for SLE, by which inactivation of CD73 on B cells produces less anti-inflammatory adenosine, resulting in immune cell activation. CD73 inactivation was not due to genetic variation but may be related to posttranslational modification. FUNDING: The German Research Council, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Hiller Research Foundation, and Cardiovascular Research Institute Duesseldorf.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Adenosina Trifosfato/metabolismo , Biomarcadores , Vías Biosintéticas , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Susceptibilidad a Enfermedades , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Inmunofenotipificación , Leucocitos/inmunología , Leucocitos/metabolismo , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/terapia , Masculino , Índice de Severidad de la Enfermedad
6.
Elife ; 102021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34152268

RESUMEN

In the adult heart, the epicardium becomes activated after injury, contributing to cardiac healing by secretion of paracrine factors. Here, we analyzed by single-cell RNA sequencing combined with RNA in situ hybridization and lineage tracing of Wilms tumor protein 1-positive (WT1+) cells, the cellular composition, location, and hierarchy of epicardial stromal cells (EpiSC) in comparison to activated myocardial fibroblasts/stromal cells in infarcted mouse hearts. We identified 11 transcriptionally distinct EpiSC populations, which can be classified into three groups, each containing a cluster of proliferating cells. Two groups expressed cardiac specification markers and sarcomeric proteins suggestive of cardiomyogenic potential. Transcripts of hypoxia-inducible factor (HIF)-1α and HIF-responsive genes were enriched in EpiSC consistent with an epicardial hypoxic niche. Expression of paracrine factors was not limited to WT1+ cells but was a general feature of activated cardiac stromal cells. Our findings provide the cellular framework by which myocardial ischemia may trigger in EpiSC the formation of cardioprotective/regenerative responses.


Asunto(s)
Fibroblastos/metabolismo , Miocardio/metabolismo , Pericardio/fisiología , Células del Estroma/metabolismo , Transcriptoma , Animales , Perfilación de la Expresión Génica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , ARN , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Proteínas WT1/metabolismo
7.
FASEB J ; 35(5): e21517, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33913581

RESUMEN

Myocardial infarction (MI) activates the epicardium to form epicardial stromal cells (EpiSC) that reside in the epicardial hypoxic microenvironment. Paracrine factors secreted by EpiSC were shown to modulate the injury response of the post-MI heart and improve cardiac function. We have previously reported that the expression of the angiogenic cytokines vascular endothelial growth factor A (VEGFA) and IL-6 is strongly upregulated in EpiSC by adenosine acting via the A2B receptor (A2B R). Since tissue hypoxia is well known to be a potent stimulus for the generation of extracellular adenosine, the present study explored the crosstalk of A2B R activation and hypoxia-hypoxia-inducible factor 1 alpha (HIF-1α) signaling in cultured EpiSC, isolated from rat hearts 5 days after MI. We found substantial nuclear accumulation of HIF-1α after A2B R activation even in the absence of hypoxia. This normoxic HIF-1α induction was PKC-dependent and involved upregulation of HIF-1α mRNA expression. While the influence of hypoxia on adenosine generation and A2B R signaling was only minor, hypoxia and A2B R activation cumulatively increased VEGFA expression. Normoxic A2B R activation triggered an HIF-1α-associated cell-protective metabolic switch and reduced oxygen consumption. HIF-1α targets and negative regulators PHD2 and PHD3 were only weakly induced by A2B R signaling, which may result in a sustained HIF-1α activity. The A2B R-mediated normoxic HIF-1α induction was also observed in cardiac fibroblasts from healthy mouse hearts, suggesting that this mechanism is also functional in other A2B R-expressing cell types. Altogether, we identified A2B R-mediated HIF-1α induction as novel aspect in the HIF-1α-adenosine crosstalk, which modulates EpiSC activity and can amplify HIF-1α-mediated cardioprotection.


Asunto(s)
Cardiotónicos/metabolismo , Hipoxia de la Célula , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Infarto del Miocardio/prevención & control , Pericardio/metabolismo , Receptor de Adenosina A2B/metabolismo , Células del Estroma/metabolismo , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Pericardio/patología , Ratas , Ratas Wistar , Receptor de Adenosina A2B/genética , Células del Estroma/patología
8.
Front Physiol ; 12: 782760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992548

RESUMEN

Patients with acute ischemic stroke (AIS) present an increased incidence of systemic inflammatory response syndrome and release of Troponin T coinciding with cardiac dysfunction. The nature of the cardiocirculatory alterations remains obscure as models to investigate systemic interferences of the brain-heart-axis following AIS are sparse. Thus, this study aims to investigate acute cardiocirculatory dysfunction and myocardial injury in mice after reperfused AIS. Ischemic stroke was induced in mice by transient right-sided middle cerebral artery occlusion (tMCAO). Cardiac effects were investigated by electrocardiograms, 3D-echocardiography, magnetic resonance imaging (MRI), invasive conductance catheter measurements, histology, flow-cytometry, and determination of high-sensitive Troponin T (hsTnT). Systemic hemodynamics were recorded and catecholamines and inflammatory markers in circulating blood and myocardial tissue were determined by immuno-assay and flow-cytometry. Twenty-four hours following tMCAO hsTnT was elevated 4-fold compared to controls and predicted long-term survival. In parallel, systolic left ventricular dysfunction occurred with impaired global longitudinal strain, lower blood pressure, reduced stroke volume, and severe bradycardia leading to reduced cardiac output. This was accompanied by a systemic inflammatory response characterized by granulocytosis, lymphopenia, and increased levels of serum-amyloid P and interleukin-6. Within myocardial tissue, MRI relaxometry indicated expansion of extracellular space, most likely due to inflammatory edema and a reduced fluid volume. Accordingly, we found an increased abundance of granulocytes, apoptotic cells, and upregulation of pro-inflammatory cytokines within myocardial tissue following tMCAO. Therefore, reperfused ischemic stroke leads to specific cardiocirculatory alterations that are characterized by acute heart failure with reduced stroke volume, bradycardia, and changes in cardiac tissue and accompanied by systemic and local inflammatory responses.

9.
J Immunol ; 204(12): 3217-3226, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32341061

RESUMEN

The glycoprotein CD83 is known to be expressed by different immune cells including activated CD4+Foxp3+ regulatory T cells (Tregs) and CD4+Foxp3- conventional T cells. However, the physiological function of endogenous CD83 in CD4+ T cell subsets is still unclear. In this study, we have generated a new CD83flox mouse line on BALB/c background, allowing for specific ablation of CD83 in T cells upon breeding with CD4-cre mice. Tregs from CD83flox/flox/CD4-cretg/wt mice had similar suppressive activity as Tregs from CD83flox/flox/CD4-crewt/wt wild-type littermates, suggesting that endogenous CD83 expression is dispensable for the inhibitory capacity of Tregs. However, CD83-deficient CD4+ conventional T cells showed elevated proliferation and IFN-γ secretion as well as an enhanced capacity to differentiate into Th1 cells and Th17 cells upon stimulation in vitro. T cell-specific ablation of CD83 expression resulted in aggravated contact hypersensitivity reaction accompanied by enhanced CD4+ T cell activation. Moreover, adoptive transfer of CD4+CD45RBhigh T cells from CD83flox/flox/CD4-cretg /wt mice into Rag2-deficient mice elicited more severe colitis associated with increased serum concentrations of IL-12 and elevated CD40 expression on CD11c+ dendritic cells (DCs). Strikingly, DCs from BALB/c mice cocultured with CD83-deficient CD4+ conventional T cells showed enhanced CD40 expression and IL-12 secretion compared with DCs cocultured with CD4+ conventional T cells from CD83flox/flox/CD4-crewt/wt wild-type mice. In summary, these results indicate that endogenous CD83 expression in CD4+ conventional T cells plays a crucial role in controlling CD4+ T cell responses, at least in part, by regulating the activity of CD11c+ DCs.


Asunto(s)
Antígenos CD/inmunología , Linfocitos T CD4-Positivos/inmunología , Inmunidad/inmunología , Inmunoglobulinas/inmunología , Inflamación/inmunología , Glicoproteínas de Membrana/inmunología , Traslado Adoptivo/métodos , Animales , Células Dendríticas/inmunología , Femenino , Interferón gamma/inmunología , Interleucina-12/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Antígeno CD83
10.
Cardiovasc Res ; 116(5): 1047-1058, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504244

RESUMEN

AIMS: Myocardial infarction (MI) leads to activation of cardiac fibroblasts (aCFs) and at the same time induces the formation of epicardium-derived cells at the heart surface. To discriminate between the two cell populations, we elaborated a fast and efficient protocol for the simultaneous isolation and characterization of aCFs and epicardial stromal cells (EpiSCs) from the infarcted mouse heart. METHODS AND RESULTS: For the isolation of aCFs and EpiSCs, infarcted hearts (50 min ischaemia/reperfusion) were digested by perfusion with a collagenase-containing medium for only 8 min, while EpiSCs were enzymatically removed from the outside by applying mild shear forces via a motor driven device. Cardiac fibroblasts (CFs) isolated from unstressed hearts served as control. Viability of isolated cells was >90%. Purity of EpiSCs was confirmed by immunofluorescence staining and qPCR of various mesenchymal markers including Wilms-tumor-protein-1. Microarray analysis of CFs, aCFs, and EpiSCs on day 5 post-MI revealed a unique gene expression pattern in the EpiSC fraction, which was enriched for epithelial markers and epithelial to mesenchymal transition-related genes. Compared to aCFs, 336 significantly altered gene entities were identified in the EpiSC fraction. qPCR analysis showed high expression of Serpinb2, Cxcl13, Adora2b, and Il10 in EpiSCs relative to CFs and aCFs. Furthermore, microarray data identified Ddah1 and Cemip to be highly up-regulated in aCFs compared to CFs. Immunostaining of the infarcted heart revealed a unique distribution of Dermokine, Aquaporin-1, Cytokeratin, Lipocalin2, and Periostin within the epicardial cell layer. CONCLUSIONS: We describe the simultaneous isolation of viable, purified fractions of aCFs and EpiSCs from the infarcted mouse heart. In this study, several differentially expressed markers for aCFs and EpiSCs were identified, underlining the importance of cell separation to study heterogeneity of stromal cells in the healing process after MI.


Asunto(s)
Separación Celular/métodos , Fibroblastos/patología , Infarto del Miocardio/patología , Miocardio/patología , Pericardio/patología , Células del Estroma/patología , Animales , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Genotipo , Preparación de Corazón Aislado , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Pericardio/metabolismo , Fenotipo , Células del Estroma/metabolismo , Factores de Tiempo , Transcriptoma
11.
Clin Res Cardiol ; 109(2): 137-160, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31144065

RESUMEN

BACKGROUND: Extracellular nucleotide metabolism contributes to chronic inflammation, cell differentiation, and tissue mineralization by controlling nucleotide and adenosine concentrations and hence its purinergic effects. This study investigated location-specific changes of extracellular nucleotide metabolism in aortic valves of patients with calcific aortic valve disease (CAVD). Individual ecto-enzymes and adenosine receptors involved were analyzed together with correlation with CAVD severity and risk factors. RESULTS: Nucleotide and adenosine degradation rates were adversely modified on the aortic surface of stenotic valve as compared to ventricular side, including decreased ATP removal (1.25 ± 0.35 vs. 2.24 ± 0.61 nmol/min/cm2) and adenosine production (1.32 ± 0.12 vs. 2.49 ± 0.28 nmol/min/cm2) as well as increased adenosine deamination (1.28 ± 0.31 vs. 0.67 ± 0.11 nmol/min/cm2). The rates of nucleotide to adenosine conversions were lower, while adenosine deamination was higher on the aortic sides of stenotic vs. non-stenotic valve. There were no differences in extracellular nucleotide metabolism between aortic and ventricular sides of non-stenotic valves. Furthermore, nucleotide degradation rates, measured on aortic side in CAVD (n = 62), negatively correlated with echocardiographic and biochemical parameters of disease severity (aortic jet velocity vs. ATP hydrolysis: r = - 0.30, p < 0.05; vs. AMP hydrolysis: r = - 0.44, p < 0.001; valvular phosphate concentration vs. ATP hydrolysis: r = - 0.26, p < 0.05; vs. AMP hydrolysis: r = - 0.25, p = 0.05) while adenosine deamination showed positive correlation trend with valvular phosphate deposits (r = 0.23, p = 0.07). Nucleotide and adenosine conversion rates also correlated with CAVD risk factors, including hyperlipidemia (AMP hydrolysis vs. serum LDL cholesterol: r = - 0.28, p = 0.05; adenosine deamination vs. total cholesterol: r = 0.25, p = 0.05; LDL cholesterol: r = 0.28, p < 0.05; triglycerides: r = 0.32, p < 0.05), hypertension (adenosine deamination vs. systolic blood pressure: r = 0.28, p < 0.05) and thrombosis (ATP hydrolysis vs. prothrombin time: r = - 0.35, p < 0.01). Functional assays as well as histological and immunofluorescence, flow cytometry and RT-PCR studies identified all major ecto-enzymes engaged in nucleotide metabolism in aortic valves that included ecto-nucleotidases, alkaline phosphatase, and ecto-adenosine deaminase. We have shown that changes in nucleotide-converting ecto-enzymes were derived from their altered activities on valve cells and immune cell infiltrate. We have also demonstrated a presence of A1, A2a and A2b adenosine receptors with diminished expression of A2a and A2b in stenotic vs. non-stenotic valves. Finally, we revealed that augmenting adenosine effects by blocking adenosine deamination with deoxycoformycin decreased aortic valve thickness and reduced markers of calcification via adenosine-dependent pathways in a mouse model of CAVD. CONCLUSIONS: This work highlights profound changes in extracellular nucleotide and adenosine metabolism in CAVD. Altered extracellular nucleotide hydrolysis and degradation of adenosine in stenotic valves may affect purinergic responses to support a pro-stenotic milieu and valve calcification. This emphasizes a potential mechanism and target for prevention and therapy. .


Asunto(s)
Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina/metabolismo , Estenosis de la Válvula Aórtica/enzimología , Válvula Aórtica/enzimología , Válvula Aórtica/patología , Calcinosis/enzimología , Hidrolasas/metabolismo , 5'-Nucleotidasa/metabolismo , Adenosina Desaminasa/metabolismo , Adulto , Anciano , Animales , Antígenos CD/metabolismo , Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/patología , Apirasa/metabolismo , Calcinosis/diagnóstico por imagen , Calcinosis/patología , Células Cultivadas , Desaminación , Modelos Animales de Enfermedad , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Hidrólisis , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Persona de Mediana Edad , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores Purinérgicos P1/metabolismo , Índice de Severidad de la Enfermedad
12.
Am J Physiol Heart Circ Physiol ; 317(1): H190-H200, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31050560

RESUMEN

Although the cardioprotective effect of adenosine is undisputed, the role of the adenosine A2b receptor (A2bR) in ischemic cardiac remodeling is not defined. In this study we aimed to unravel the role A2bR plays in modulating the immune response and the healing mechanisms after myocardial infarction. Genetic and pharmacological (PSB603) inactivation of A2bR as well as activation of A2bR with BAY60-6583 does not alter cardiac remodeling of the infarcted (50-min left anterior descending artery occlusion/reperfusion) murine heart. Flow cytometry of immune cell subsets identified a significant increase in B cells, NK cells, CD8 and CD4 T cells, as well as FoxP3-expressing regulatory T cells in the injured heart in A2bR-deficient mice. Analysis of T-cell function revealed that expression and secretion of interleukin (IL)-2, interferon (IFN)γ, and tumor necrosis factor (TNF)α by T cells is under A2bR control. In addition, we found substantial cellular heterogeneity in the response of immune cells and cardiomyocytes to A2bR deficiency: while in the absence of A2bR, expression of IL-6 was greatly reduced in cardiomyocytes and immune cells except T cells, and expression of IL-1ß was strongly reduced in cardiomyocytes, granulocytes, and B cells as determined by quantitative PCR. Our findings indicate that A2bR signaling in the ischemic heart triggers substantial changes in cardiac immune cell composition of the lymphoid lineage and induces a profound cell type-specific downregulation of IL-6 and IL-1ß. This suggests the presence of a targetable adenosine-A2bR-IL-6-axis triggered by adenosine formed by the ischemic heart. NEW & NOTEWORTHY Genetic deletion and pharmacological inactivation/activation of A2bR does not alter cardiac remodeling after MI but is associated by compensatory upregulation of various pro- and anti-inflammatory immune cell subsets (B cells, NK cells, CD8 and CD4 T cells, regulatory T cells). In the inflamed heart, A2bR modulates the expression of IL-2, IFNγ, TNFα in T cells and of IL-6 in cardiomyocytes, monocytes, granulocytes and B cells. This suggests an important adenosine-IL-6 axis, which is controlled by A2bR via local adenosine.


Asunto(s)
Interleucina-6/metabolismo , Linfocitos/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Adenosina A2B/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Modelos Animales de Enfermedad , Femenino , Interleucina-1beta/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/inmunología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/patología , Receptor de Adenosina A2B/deficiencia , Receptor de Adenosina A2B/genética , Transducción de Señal , Remodelación Ventricular
13.
J Autoimmun ; 96: 94-103, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30201436

RESUMEN

MircoRNAs (miRs) are small molecules that regulate gene expression at the posttranscriptional level. They have been proposed to be involved in the regulation of several immune responses including autoimmunity. Here, we identified miR-183 and miR-96 to be highly expressed in CD4+ T cells from peripheral blood of Graves' orbitopathy (GO) patients as well as in human and murine T cells upon activation in vitro. By using Luciferase-based binding assays, we identified EGR-1 as target for miR-183 and miR-96. Overexpression of miR-183 and miR-96 in murine CD4+ T cells by retroviral gene transfer resulted in decreased EGR-1 and PTEN expression, elevated Akt phosphorylation and enhanced proliferation. In contrast, treatment of murine CD4+ T cells with specific antagomiRs increased EGR-1 and PTEN expression and interfered with the proliferative activity upon stimulation in vitro. Strikingly, adoptive transfer of miR-183 and miR-96 overexpressing antigen-specific T cells into INS-HA/Rag2KO mice accelerated the development of autoimmune diabetes, whereas transfer of antagomiR-treated cells delayed the disease onset. These results indicate that miR-183 and miR-96 have the ability to regulate the strength of T cell activation and thereby the development and severity of T cell-dependent autoimmune diseases.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Diabetes Mellitus Tipo 1/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Oftalmopatía de Graves/genética , MicroARNs/genética , Traslado Adoptivo , Animales , Antagomirs/genética , Linfocitos T CD4-Positivos/trasplante , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Regulación hacia Arriba
14.
Mol Ther ; 27(1): 46-58, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30528085

RESUMEN

Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r-/- mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Células Mieloides/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Animales , Ecocardiografía , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
15.
Sci Rep ; 8(1): 17078, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459442

RESUMEN

Ischemic heart diseases are the most frequent diseases in the western world. Apart from Interleukin (IL-)1, inflammatory therapeutic targets in the clinic are still missing. Interestingly, opposing roles of the pro-inflammatory cytokine IL-23 have been described in cardiac ischemia in mice. IL-23 is a composite cytokine consisting of p19 and p40 which binds to IL-23R and IL-12Rß1 to initiate signal transduction characterized by activation of the Jak/STAT, PI3K and Ras/Raf/MAPK pathways. Here, we generate IL-23R-Y416FΔICD signaling deficient mice and challenged these mice in close- and open-chest left anterior descending coronary arteria ischemia/reperfusion experiments. Our experiments showed only minimal changes in all assayed parameters in IL-23R signaling deficient mice compared to wild-type mice in ischemia and for up to four weeks of reperfusion, including ejection fraction, endsystolic volume, enddiastolic volume, infarct size, gene regulation and α smooth muscle actin (αSMA) and Hyaluronic acid (HA) protein expression. Moreover, injection of IL-23 in wild-type mice after LAD ischemia/reperfusion had also no influence on the outcome of the healing phase. Our data showed that IL-23R deficiency has no effects in myocardial I/R.


Asunto(s)
Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Receptores de Interleucina/fisiología , Animales , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Transducción de Señal
16.
Circulation ; 136(3): 297-313, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28432149

RESUMEN

BACKGROUND: T cells are required for proper healing after myocardial infarction. The mechanism of their beneficial action, however, is unknown. The proinflammatory danger signal ATP, released from damaged cells, is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine. Here, we investigate the contribution of CD73-derived adenosine produced by T cells to cardiac remodeling after ischemia/reperfusion and define its mechanism of action. METHODS: Myocardial ischemia (50 minutes followed by reperfusion) was induced in global CD73-/- and CD4-CD73-/- mice. Tissue injury, T-cell purinergic signaling, cytokines, and cardiac function (magnetic resonance tomography at 9.4 T over 4 weeks) were analyzed. RESULTS: Changes in functional parameters of CD4-CD73-/- mice were identical to those in global CD73 knockouts (KOs). T cells infiltrating the injured heart significantly upregulated at the gene (quantitative polymerase chain reaction) and protein (enzymatic activity) levels critical transporters and enzymes (connexin43, connexin37, pannexin-1, equilibrative nucleoside transporter 1, CD39, CD73, ecto-nucleotide pyrophosphatase/phosphodiesterases 1 and 3, CD157, CD38) for the accelerated release and hydrolysis of ATP, cAMP, AMP, and NAD to adenosine. It is surprising that a lack of CD39 on T cells (from CD39-/- mice) did not alter ATP hydrolysis and very likely involves pyrophosphatases (ecto-nucleotide pyrophosphatase/phosphodiesterases 1 and 3). Circulating T cells predominantly expressed A2a receptor (A2aR) transcripts. After myocardial infarction, A2b receptor (A2bR) transcription was induced in both T cells and myeloid cells in the heart. Thus, A2aR and A2bR signaling may contribute to myocardial responses after myocardial infarction. In the case of T cells, this was associated with an accelerated secretion of proinflammatory and profibrotic cytokines (interleukin-2, interferon-γ, and interleukin-17) when CD73 was lacking. Cytokine production by T cells from peripheral lymph nodes was inhibited by A2aR activation (CGS-21680). The A2bR agonist BAY 60-6583 showed off-target effects. The adenosine receptor agonist NECA inhibited interferon-γ and stimulated interleukin-6 production, each of which was antagonized by a specific A2bR antagonist (PSB-603). CONCLUSIONS: This work demonstrates that CD73 on T cells plays a crucial role in the cardiac wound healing process after myocardial infarction. The underlying mechanism involves a profound increase in the hydrolysis of ATP/NAD and AMP, resulting primarily from the upregulation of pyrophosphatases and CD73. We also define A2bR/A2aR-mediated autacoid feedback inhibition of proinflammatory/profibrotic cytokines by T cell-derived CD73.


Asunto(s)
5'-Nucleotidasa/metabolismo , Infarto del Miocardio/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2B/metabolismo , Linfocitos T/metabolismo , Cicatrización de Heridas/fisiología , 5'-Nucleotidasa/inmunología , Animales , Movimiento Celular/fisiología , Reprogramación Celular/fisiología , Femenino , Ratones , Ratones Noqueados , Ratones Transgénicos , Infarto del Miocardio/inmunología , Receptor de Adenosina A2A/inmunología , Receptor de Adenosina A2B/inmunología , Linfocitos T/inmunología
17.
Circ Heart Fail ; 10(4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28404626

RESUMEN

BACKGROUND: Structural damage during heart failure development leads to increased infiltration of leukocytes. Because purinergic signaling on immune cells may impact on the inflammatory response, we evaluated the role of ecto-5'-nucleotidase (CD73) on the development of heart failure after transverse aortic constriction (TAC) using global and T-cell-specific CD73-/- mice. METHODS AND RESULTS: Leukocytes infiltrating the failing heart were analyzed by a multistep enzymatic procedure over a period of 16 weeks using fluorescence-activated cell sorting. TAC significantly enhanced the infiltration of leukocytes, especially T cells. The fraction of CD73 expressing cells increased over time exclusively on cytotoxic T cells, T-helper cells, and regulatory T cells. Cardiac function significantly declined in T-cell-specific CD4-Cre+/-CD73flox/flox mice identical to that observed in global CD73 mutants and was associated with enhanced fibrosis (collagen, laminin, vimentin, periostin). Expression analysis by quantitative reverse transcription polymerase chain reaction of extracellular purine degrading enzymes and P1 and P2 receptors on T cells isolated from the injured heart revealed profound upregulation of the enzymatic machinery for hydrolysis of extracellular adenosine triphosphate and nicotinamide adenine dinucleotide, both pathways converging in the formation of AMP and adenosine via CD73. Among the P1 receptors, only the A2a receptor was significantly upregulated after TAC. T cells isolated from TAC-treated hearts show enhanced production of proinflammatory cytokines (interleukin-3, interleukin-6, interleukin-13, interleukin-17, macrophage inflammatory proteins-1α, and macrophage inflammatory proteins-1ß) when CD73 was lacking. CONCLUSIONS: Our data provide first evidence that CD73 on T cells plays an important anti-inflammatory role in TAC-induced heart failure, which is associated with antifibrotic activity and reduced production of proinflammatory cytokines most likely by activation of the adenosine A2a receptor.


Asunto(s)
5'-Nucleotidasa/metabolismo , Insuficiencia Cardíaca/inmunología , Inflamación/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , 5'-Nucleotidasa/deficiencia , 5'-Nucleotidasa/inmunología , Adenosina/inmunología , Adenosina Trifosfato/metabolismo , Animales , Aorta/enzimología , Colágeno/inmunología , Constricción , Modelos Animales de Enfermedad , Fibrosis/enzimología , Insuficiencia Cardíaca/genética , Interleucina-3/metabolismo , Masculino , Ratones , Ratones Noqueados
18.
Exp Hematol ; 45: 27-35.e1, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27693388

RESUMEN

Recent clinical trials have indicated the high potential of regulatory T cells (Tregs) in the prevention of acute and chronic graft-versus-host disease (GvHD) after hematopoietic stem cell transplantation, but immune interventions require large numbers of Tregs. With respect to their limited natural occurrence, development and optimization of protocols for large-scale expansion of clinical-grade Tregs are essential if considered for therapeutic use. We compared different clinical-grade large-scale expansion protocols for repetitive transfer of large numbers of Tregs in clinical trials for the prevention of acute and/or chronic GvHD. Donor Tregs were isolated using magnetic-activated cell sorting (MACS) technology with good manufacturing practice-compliant devices. CD8 and CD19 depletion followed by CD25 enrichment resulted in the isolation of CD4+CD25+CD127- Tregs with a mean purity of 77%. Cell populations were expanded ex vivo using X-Vivo 15 (±rapamycin), TexMACS (±rapamycin), and CellGro DC (±rapamycin) in the presence of interleukin-2. The highest rates of expansion of clinical-grade Tregs were observed for X-Vivo 15 and CellGro DC without rapamycin in compared with all other expansion media tested. The suppressive capacity of the expanded Treg population was maintained under all conditions investigated. Our data suggest that expansion with CellGro provides data comparable to those obtained with TexMACS or X-Vivo 15 with rapamycin, although all three conditions did not provide the same propagation rate as X-Vivo 15 alone. With respect to functionality, phenotype, and stability, CellGro DC medium represents a reasonable alternative for good manufacturing practice-compatible large-scale ex vivo expansion.


Asunto(s)
Traslado Adoptivo/métodos , Traslado Adoptivo/normas , Técnicas de Cultivo Celular por Lotes , Adhesión a Directriz , Linfocitos T Reguladores , Adulto , Técnicas de Cultivo Celular por Lotes/métodos , Técnicas de Cultivo Celular por Lotes/normas , Biomarcadores , Movimiento Celular , Separación Celular , Metilación de ADN , Femenino , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Inmunofenotipificación , Terapia de Inmunosupresión , Masculino , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Adulto Joven
19.
PLoS One ; 10(4): e0124927, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25928296

RESUMEN

In our previous work we could identify defects in human regulatory T cells (Tregs) likely favoring the development of graft-versus-host disease (GvHD) following allogeneic stem cell transplantation (SCT). Treg transcriptome analyses comparing GvHD and immune tolerant patients uncovered regulated gene transcripts highly relevant for Treg cell function. Moreover, granzyme A (GZMA) also showed a significant lower expression at the protein level in Tregs of GvHD patients. GZMA induces cytolysis in a perforin-dependent, FAS-FASL independent manner and represents a cell-contact dependent mechanism for Tregs to control immune responses. We therefore analyzed the functional role of GZMA in a murine standard model for GvHD. For this purpose, adoptively transferred CD4+CD25+ Tregs from gzmA-/- mice were analyzed in comparison to their wild type counterparts for their capability to prevent murine GvHD. GzmA-/- Tregs home efficiently to secondary lymphoid organs and do not show phenotypic alterations with respect to activation and migration properties to inflammatory sites. Whereas gzmA-/- Tregs are highly suppressive in vitro, Tregs require GZMA to rescue hosts from murine GvHD, especially regarding gastrointestinal target organ damage. We herewith identify GZMA as critical effector molecule of human Treg function for gastrointestinal immune response in an experimental GvHD model.


Asunto(s)
Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/prevención & control , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Granzimas/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Movimiento Celular/inmunología , Modelos Animales de Enfermedad , Enfermedades Gastrointestinales/genética , Expresión Génica , Enfermedad Injerto contra Huésped/genética , Granzimas/genética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Inmunofenotipificación , Inmunoterapia Adoptiva , Tejido Linfoide/inmunología , Ratones , Ratones Noqueados , Fenotipo
20.
J Exp Med ; 209(11): 2001-16, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-23045606

RESUMEN

Infiltration of Foxp3(+) regulatory T (T reg) cells is considered to be a critical step during tumor development and progression. T reg cells supposedly suppress locally an effective anti-tumor immune response within tumor tissues, although the precise mechanism by which T reg cells infiltrate the tumor is still unclear. We provide evidence that Neuropilin 1 (Nrp-1), highly expressed by Foxp3(+) T reg cells, regulates the immunological anti-tumor control by guiding T reg cells into the tumor in response to tumor-derived vascular endothelial growth factor (VEGF). We demonstrate for the first time that T cell-specific ablation of Nrp-1 expression results in a significant breakdown in tumor immune escape in various transplantation models and in a spontaneous, endogenously driven melanoma model associated with strongly reduced tumor growth and prolonged tumor-free survival. Strikingly, numbers of tumor-infiltrating Foxp3(+) T reg cells were significantly reduced accompanied by enhanced activation of CD8(+) T cells within tumors of T cell-specific Nrp-1-deficient mice. This phenotype can be reversed by adoptive transfer of Nrp-1(+) T reg cells from wild-type mice. Thus, our data strongly suggest that Nrp-1 acts as a key mediator of Foxp3(+) T reg cell infiltration into the tumor site resulting in a dampened anti-tumor immune response and enhanced tumor progression.


Asunto(s)
Melanoma Experimental/inmunología , Neuropilina-1/inmunología , Neoplasias Cutáneas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/inmunología , Citometría de Flujo , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Activación de Linfocitos/inmunología , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuropilina-1/deficiencia , Neuropilina-1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Linfocitos T Reguladores/metabolismo , Carga Tumoral/genética , Carga Tumoral/inmunología , Escape del Tumor/genética , Escape del Tumor/inmunología , Factor A de Crecimiento Endotelial Vascular/deficiencia , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...