Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 4(1): 578, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990694

RESUMEN

Channelrhodopsins are widely used in optogenetic applications. High photocurrents and low current inactivation levels are desirable. Two parallel photocycles evoked by different retinal conformations cause cation-conducting channelrhodopsin-2 (CrChR2) inactivation: one with efficient conductivity; one with low conductivity. Given the longer half-life of the low conducting photocycle intermediates, which accumulate under continuous illumination, resulting in a largely reduced photocurrent. Here, we demonstrate that for channelrhodopsin-1 of the cryptophyte Guillardia theta (GtACR1), the highly conducting C = N-anti-photocycle was the sole operating cycle using time-resolved step-scan FTIR spectroscopy. The correlation between our spectroscopic measurements and previously reported electrophysiological data provides insights into molecular gating mechanisms and their role in the characteristic high photocurrents. The mechanistic importance of the central constriction site amino acid Glu-68 is also shown. We propose that canceling out the poorly conducting photocycle avoids the inactivation observed in CrChR2, and anticipate that this discovery will advance the development of optimized optogenetic tools.


Asunto(s)
Aniones/química , Channelrhodopsins/fisiología , Criptófitas/fisiología , Fenómenos Electrofisiológicos , Activación del Canal Iónico , Luz , Optogenética , Espectrofotometría
2.
Chembiochem ; 21(5): 612-617, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31468691

RESUMEN

Optogenetics uses light-sensitive proteins, so-called optogenetic tools, for highly precise spatiotemporal control of cellular states and signals. The major limitations of such tools include the overlap of excitation spectra, phototoxicity, and lack of sensitivity. The protein characterized in this study, the Japanese lamprey parapinopsin, which we named UVLamP, is a promising optogenetic tool to overcome these limitations. Using a hybrid strategy combining molecular, cellular, electrophysiological, and computational methods we elucidated a structural model of the dark state and probed the optogenetic potential of UVLamP. Interestingly, it is the first described bistable vertebrate opsin that has a charged amino acid interacting with the Schiff base in the dark state, that has no relevance for its photoreaction. UVLamP is a bistable UV-sensitive opsin that allows for precise and sustained optogenetic control of G protein-coupled receptor (GPCR) pathways and can be switched on, but more importantly also off within milliseconds via lowintensity short light pulses. UVLamP exhibits an extremely narrow excitation spectrum in the UV range allowing for sustained activation of the Gi/o pathway with a millisecond UV light pulse. Its sustained pathway activation can be switched off, surprisingly also with a millisecond blue light pulse, minimizing phototoxicity. Thus, UVLamP serves as a minimally invasive, narrow-bandwidth probe for controlling the Gi/o pathway, allowing for combinatorial use with multiple optogenetic tools or sensors. Because UVLamP activated Gi/o signals are generally inhibitory and decrease cellular activity, it has tremendous potential for health-related applications such as relieving pain, blocking seizures, and delaying neurodegeneration.


Asunto(s)
Proteínas de Peces/metabolismo , Lampreas/metabolismo , Optogenética/métodos , Receptores Acoplados a Proteínas G/metabolismo , Opsinas de Bastones/metabolismo , Animales , Células HEK293 , Humanos , Rayos Ultravioleta
3.
Chembiochem ; 20(14): 1766-1771, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30920724

RESUMEN

The primary goal of optogenetics is the light-controlled noninvasive and specific manipulation of various cellular processes. Herein, we present a hybrid strategy for targeted protein engineering combining computational techniques with electrophysiological and UV/visible spectroscopic experiments. We validated our concept for channelrhodopsin-2 and applied it to modify the less-well-studied vertebrate opsin melanopsin. Melanopsin is a promising optogenetic tool that functions as a selective molecular light switch for G protein-coupled receptor pathways. Thus, we constructed a model of the melanopsin Gq protein complex and predicted an absorption maximum shift of the Y211F variant. This variant displays a narrow blue-shifted action spectrum and twofold faster deactivation kinetics compared to wild-type melanopsin on G protein-coupled inward rectifying K+ (GIRK) channels in HEK293 cells. Furthermore, we verified the in vivo activity and optogenetic potential for the variant in mice. Thus, we propose that our developed concept will be generally applicable to designing optogenetic tools.


Asunto(s)
Opsinas de Bastones/química , Opsinas de Bastones/efectos de la radiación , Secuencia de Aminoácidos , Animales , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Luz , Ratones , Mutación , Optogenética/métodos , Prueba de Estudio Conceptual , Ingeniería de Proteínas , Células de Purkinje/metabolismo , Células de Purkinje/efectos de la radiación , Opsinas de Bastones/genética , Alineación de Secuencia , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...