Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Microbiol ; 59(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33087430

RESUMEN

Staphylococcus aureus ST45 is a major global MRSA lineage with huge strain diversity and a high clinical impact. It is one of the most prevalent carrier lineages but also frequently causes severe invasive disease, such as bacteremia. Little is known about its evolutionary history. In this study, we used whole-genome sequencing to analyze a large collection of 451 diverse ST45 isolates from 6 continents and 26 countries. De novo-assembled genomes were used to understand genomic plasticity and to perform coalescent analyses. The ST45 population contained two distinct sublineages, which correlated with the isolates' geographical origins. One sublineage primarily consisted of European/North American isolates, while the second sublineage primarily consisted of African and Australian isolates. Bayesian analysis predicted ST45 originated in northwestern Europe about 500 years ago. Isolation time, host, and clinical symptoms did not correlate with phylogenetic groups. Our phylogenetic analyses suggest multiple acquisitions of the SCCmec element and key virulence factors throughout the evolution of the ST45 lineage.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Australia/epidemiología , Teorema de Bayes , Europa (Continente)/epidemiología , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Filogenia , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/genética
3.
Phys Rev Lett ; 121(2): 022504, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30085714

RESUMEN

Final-state kinematic imbalances are measured in mesonless production of ν_{µ}+A→µ^{-}+p+X in the MINERvA tracker. Initial- and final-state nuclear effects are probed using the direction of the µ^{-}-p transverse momentum imbalance and the initial-state momentum of the struck neutron. Differential cross sections are compared to predictions based on current approaches to medium modeling. These models underpredict the cross section at intermediate intranuclear momentum transfers that generally exceed the Fermi momenta. As neutrino interaction models need to correctly incorporate the effect of the nucleus in order to predict neutrino energy resolution in oscillation experiments, this result points to a region of phase space where additional cross section strength is needed in current models, and demonstrates a new technique that would be suitable for use in fine-grained liquid argon detectors where the effect of the nucleus may be even larger.

4.
Phys Rev Lett ; 119(8): 082001, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28952766

RESUMEN

Charged-current ν_{µ} interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q^{2}, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q^{2} and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

5.
Phys Rev Lett ; 119(1): 011802, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28731762

RESUMEN

Neutral-current production of K^{+} by atmospheric neutrinos is a background in searches for the proton decay p→K^{+}ν[over ¯]. Reactions such as νp→νK^{+}Λ are indistinguishable from proton decays when the decay products of the Λ are below detection threshold. Events with K^{+} are identified in MINERvA by reconstructing the timing signature of a K^{+} decay at rest. A sample of 201 neutrino-induced neutral-current K^{+} events is used to measure differential cross sections with respect to the K^{+} kinetic energy, and the non-K^{+} hadronic visible energy. An excess of events at low hadronic visible energy is observed relative to the prediction of the neut event generator. Good agreement is observed with the cross section prediction of the genie generator. A search for photons from π^{0} decay, which would veto a neutral-current K^{+} event in a proton decay search, is performed, and a 2σ deficit of detached photons is observed relative to the genie prediction.

6.
Phys Rev Lett ; 117(11): 111801, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27661679

RESUMEN

The MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current π^{0} production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26±0.02(stat.)±0.08(sys.)×10^{-39} cm^{2}. The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive π^{0} production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino-oscillation experiments searching for ν_{µ} to ν_{e} oscillations.

7.
Phys Rev Lett ; 117(6): 061802, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27541459

RESUMEN

Neutrino-induced charged-current coherent kaon production ν_{µ}A→µ^{-}K^{+}A is a rare, inelastic electroweak process that brings a K^{+} on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K^{+}, µ^{-}, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ significance.

8.
Phys Rev Lett ; 116(8): 081802, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26967410

RESUMEN

The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q^{2} are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q^{2} for ν_{e} with that of similarly selected ν_{µ}-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current ν_{e} interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.

9.
Phys Rev Lett ; 116(7): 071802, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26943528

RESUMEN

Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current ν_{µ} interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced population of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.

10.
Phys Rev Lett ; 112(23): 231801, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24972195

RESUMEN

We present measurements of ν(µ) charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies 2

11.
Phys Rev Lett ; 113(26): 261802, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25615308

RESUMEN

Neutrino-induced coherent charged pion production on nuclei νµA→µ(±)π(∓)A is a rare, inelastic interaction in which a small squared four-momentum |t| is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t| from the final-state pion and muon. We select low |t| events to isolate a sample rich in coherent candidates. By selecting low |t| events, we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and antineutrinos on carbon. We find poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments.

12.
Phys Rev Lett ; 111(2): 022501, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23889388

RESUMEN

We have isolated ν(µ) charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, M(A), is set to 0.99 GeV/c² but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q² favor this interpretation over an alternative in which the axial mass is increased.

13.
Phys Rev Lett ; 111(2): 022502, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23889389

RESUMEN

We report a study of ν(µ) charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a µ- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ² and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...