Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(9): 4363-4384, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36942481

RESUMEN

Crossing over between homologs is critical for the stable segregation of chromosomes during the first meiotic division. Saccharomyces cerevisiae Mer3 (HFM1 in mammals) is a SF2 helicase and member of the ZMM group of proteins, that facilitates the formation of the majority of crossovers during meiosis. Here, we describe the structural organisation of Mer3 and using AlphaFold modelling and XL-MS we further characterise the previously described interaction with Mlh1-Mlh2. We find that Mer3 also forms a previously undescribed complex with the recombination regulating factors Top3 and Rmi1 and that this interaction is competitive with Sgs1BLM helicase. Using in vitro reconstituted D-loop assays we show that Mer3 inhibits the anti-recombination activity of Sgs1 helicase, but only in the presence of Dmc1. Thus we provide a mechanism whereby Mer3 interacts with a network of proteins to protect Dmc1 derived D-loops from dissolution.


Asunto(s)
ADN Helicasas , Recombinación Homóloga , Meiosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Intercambio Genético , ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Meiosis/genética , Unión Proteica , Pliegue de Proteína , RecQ Helicasas/antagonistas & inhibidores , RecQ Helicasas/química , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Unión Competitiva
2.
Sci Immunol ; 8(79): eabq7001, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608151

RESUMEN

Flagellin, the protein subunit of the bacterial flagellum, stimulates the innate immune receptor Toll-like receptor 5 (TLR5) after pattern recognition or evades TLR5 through lack of recognition. This binary response fails to explain the weak agonism of flagellins from commensal bacteria, raising the question of how TLR5 response is tuned. Here, we screened abundant flagellins present in metagenomes from human gut for both TLR5 recognition and activation and uncovered a class of flagellin-TLR5 interaction termed silent recognition. Silent flagellins were weak TLR5 agonists despite pattern recognition. Receptor activity was tuned by a TLR5-flagellin interaction distal to the site of pattern recognition that was present in Salmonella flagellin but absent in silent flagellins. This interaction enabled flagellin binding to preformed TLR5 dimers and increased TLR5 signaling by several orders of magnitude. Silent recognition by TLR5 occurred in human organoids and mice, and silent flagellin proteins were present in human stool. These flagellins were produced primarily by the abundant gut bacteria Lachnospiraceae and were enriched in nonindustrialized populations. Our findings provide a mechanism for the innate immune system to tolerate commensal-derived flagellins while remaining vigilant to the presence of flagellins produced by pathogens.


Asunto(s)
Flagelina , Receptor Toll-Like 5 , Animales , Humanos , Ratones , Bacterias , Flagelina/metabolismo , Transducción de Señal , Intestinos
3.
iScience ; 25(11): 105439, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388968

RESUMEN

During meiosis, programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination. DMC1, a conserved recombinase, plays a central role in this process. DMC1 promotes DNA strand exchange between homologous chromosomes, thus creating the physical linkage between them. Its function is regulated not only by several accessory proteins but also by bivalent ions. Here, we show that whereas calcium ions in the presence of ATP cause a conformational change within DMC1, stimulating its DNA binding and D-loop formation, they inhibit the extension of the invading strand within the D-loop. Based on structural studies, we have generated mutants of two highly conserved amino acids - E162 and D317 - in human DMC1, which are deficient in calcium regulation. In vivo studies of their yeast homologues further showed that they exhibit severe defects in meiosis, thus emphasizing the importance of calcium ions in the regulation of DMC1 function and meiotic recombination.

4.
Elife ; 102021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34951404

RESUMEN

In meiosis, DNA double-strand break (DSB) formation by Spo11 initiates recombination and enables chromosome segregation. Numerous factors are required for Spo11 activity, and couple the DSB machinery to the development of a meiosis-specific 'axis-tethered loop' chromosome organisation. Through in vitro reconstitution and budding yeast genetics, we here provide architectural insight into the DSB machinery by focussing on a foundational DSB factor, Mer2. We characterise the interaction of Mer2 with the histone reader Spp1, and show that Mer2 directly associates with nucleosomes, likely highlighting a contribution of Mer2 to tethering DSB factors to chromatin. We reveal the biochemical basis of Mer2 association with Hop1, a HORMA domain-containing chromosomal axis factor. Finally, we identify a conserved region within Mer2 crucial for DSB activity, and show that this region of Mer2 interacts with the DSB factor Mre11. In combination with previous work, we establish Mer2 as a keystone of the DSB machinery by bridging key protein complexes involved in the initiation of meiotic recombination.


Organisms are said to be diploid when they carry two copies of each chromosome in their cells, one from each of their biological parents. But in order for each parent to only pass on one copy of their own chromosomes, they need to make haploid cells, which only carry one copy of each chromosome. These cells form by a special kind of cell division called meiosis, in which the two chromosomes from each pair in the parent cells are first linked, and then pulled apart into the daughter cells. Accurate meiosis requires a type of DNA damage called double-stranded DNA breaks. These breaks cut through the chromosomes and can be dangerous to the cell if they are not repaired correctly. During meiosis, a set of proteins gather around the chromosomes to ensure the cuts happen in the right place and to repair the damage. One of these proteins is called Mer2. Previous studies suggest that this protein plays a role in placing the DNA breaks and controlling when they happen. To find out more, Rousova et al. examined Mer2 and the proteins that interact with it in budding yeast cells. This involved taking the proteins out of the cell to get a closer look. The experiments showed that Mer2 sticks directly to the chromosomes and acts as a tether for other proteins. It collaborates with two partners, called Hop1 and Mre11, to make sure that DNA breaks happen safely. These proteins detect the state of the chromosome and repair the damage. Stopping Mer2 from interacting with Mre11 prevented DNA breaks from forming in budding yeast cells. Although Rousova et al. used budding yeast to study the proteins involved in meiosis, similar proteins exist in plant and animal cells too. Understanding how they work could open new avenues of research into cell division. For example, studies on plant proteins could provide tools for creating new crop strains. Studies on human proteins could also provide insights into fertility problems and cancer.


Asunto(s)
Roturas del ADN de Doble Cadena , Meiosis , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Protein Sci ; 30(1): 108-114, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32955754

RESUMEN

The successful production of recombinant protein for biochemical, biophysical, and structural biological studies critically depends on the correct expression organism. Currently, the most commonly used expression organisms for structural studies are Escherichia coli (~70% of all PDB structures) and the baculovirus/ insect cell expression system (~5% of all PDB structures). While insect cell expression is frequently successful for large eukaryotic proteins, it is relatively expensive and time-consuming compared to E. coli expression. Frequently the decision to carry out a baculovirus project means restarting cloning from scratch. Here we describe an integrated system that allows simultaneous cloning into E. coli and baculovirus expression vectors using the same PCR products. The system offers a flexible array of N- and C-terminal affinity, solubilization and utility tags, and the speed allows expression screening to be completed in E. coli, before carrying out time and cost-intensive experiments in baculovirus. Importantly, we describe a means of rapidly generating polycistronic bacterial constructs based on the hugely successful biGBac system, making InteBac of particular interest for researchers working on recombinant protein complexes.


Asunto(s)
Baculoviridae/genética , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
6.
Methods Mol Biol ; 2153: 483-502, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840800

RESUMEN

In vitro analysis of posttranslational modifications such as sumoylation provides a great tool to not only identify the target proteins but also to characterize the specific effects of this modification on the protein features and uncover possible regulatory mechanism. In this chapter, we will describe the purification of yeast SUMO machinery proteins and their use to identify SUMO modification of target proteins in vitro. Furthermore, we will show several examples characterizing the effect of sumoylation on the biochemical activities of various proteins involved in homologous recombination (HR) that helped to better understand the regulatory role of this modification.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Recombinación Homóloga , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Sumoilación
7.
Commun Biol ; 2: 174, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31098407

RESUMEN

Dna2 is an essential nuclease-helicase that acts in several distinct DNA metabolic pathways including DNA replication and recombination. To balance these functions and prevent unscheduled DNA degradation, Dna2 activities must be regulated. Here we show that Saccharomyces cerevisiae Dna2 function is controlled by sumoylation. We map the sumoylation sites to the N-terminal regulatory domain of Dna2 and show that in vitro sumoylation of recombinant Dna2 impairs its nuclease but not helicase activity. In cells, the total levels of the non-sumoylatable Dna2 variant are elevated. However, non-sumoylatable Dna2 shows impaired nuclear localization and reduced recruitment to foci upon DNA damage. Non-sumoylatable Dna2 reduces the rate of DNA end resection, as well as impedes cell growth and cell cycle progression through S phase. Taken together, these findings show that in addition to Dna2 phosphorylation described previously, Dna2 sumoylation is required for the homeostasis of the Dna2 protein function to promote genome stability.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Daño del ADN , ADN Helicasas/genética , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Estabilidad de Enzimas , Cinética , Redes y Vías Metabólicas , Fosforilación , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación
8.
BMC Biol ; 15(1): 90, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28969641

RESUMEN

BACKGROUND: Proper DNA replication is essential for faithful transmission of the genome. However, replication stress has serious impact on the integrity of the cell, leading to stalling or collapse of replication forks, and has been determined as a driving force of carcinogenesis. Mus81-Mms4 complex is a structure-specific endonuclease previously shown to be involved in processing of aberrant replication intermediates and promotes POLD3-dependent DNA synthesis via break-induced replication. However, how replication components might be involved in this process is not known. RESULTS: Herein, we show the interaction and robust stimulation of Mus81-Mms4 nuclease activity by heteropentameric replication factor C (RFC) complex, the processivity factor of replicative DNA polymerases that is responsible for loading of proliferating cell nuclear antigen (PCNA) during DNA replication and repair. This stimulation is enhanced by RFC-dependent ATP hydrolysis and by PCNA loading on the DNA. Moreover, this stimulation is not specific to Rfc1, the largest of subunit of this complex, thus indicating that alternative clamp loaders may also play a role in the stimulation. We also observed a targeting of Mus81 by RFC to the nick-containing DNA substrate and we provide further evidence that indicates cooperation between Mus81 and the RFC complex in the repair of DNA lesions generated by various DNA-damaging agents. CONCLUSIONS: Identification of new interacting partners and modulators of Mus81-Mms4 nuclease, RFC, and PCNA imply the cooperation of these factors in resolution of stalled replication forks and branched DNA structures emanating from the restarted replication forks under conditions of replication stress.


Asunto(s)
Proteínas de Unión al ADN/genética , Endonucleasas/genética , Endonucleasas de ADN Solapado/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteína de Replicación C/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinación Genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Cell ; 66(5): 658-671.e8, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575661

RESUMEN

The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain, or phosphorylation site causes excessive binding of RAD51 to CFS loci and impairs CFS expression. This leads to defective chromosome segregation and accumulation of CFS-associated DNA damage in G1 cells. Biochemically, RECQ5 alleviates the inhibitory effect of RAD51 on 3'-flap DNA cleavage by MUS81-EME1 through its RAD51 filament disruption activity. These data suggest that RECQ5 removes RAD51 filaments stabilizing stalled replication forks at CFSs and hence facilitates CFS cleavage by MUS81-EME1.


Asunto(s)
Sitios Frágiles del Cromosoma , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/biosíntesis , Endonucleasas/metabolismo , Mitosis , RecQ Helicasas/metabolismo , Origen de Réplica , Sitios de Unión , Proteína Quinasa CDC2 , Inestabilidad Cromosómica , Segregación Cromosómica , Quinasas Ciclina-Dependientes/metabolismo , ADN/genética , Daño del ADN , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Células HEK293 , Células HeLa , Humanos , Fosforilación , Unión Proteica , Interferencia de ARN , Recombinasa Rad51/metabolismo , RecQ Helicasas/genética , Factores de Tiempo , Transfección
10.
EMBO J ; 36(2): 213-231, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27932447

RESUMEN

Cells use homology-dependent DNA repair to mend chromosome breaks and restore broken replication forks, thereby ensuring genome stability and cell survival. DNA break repair via homology-based mechanisms involves nuclease-dependent DNA end resection, which generates long tracts of single-stranded DNA required for checkpoint activation and loading of homologous recombination proteins Rad52/51/55/57. While recruitment of the homologous recombination machinery is well characterized, it is not known how its presence at repair loci is coordinated with downstream re-synthesis of resected DNA We show that Rad51 inhibits recruitment of proliferating cell nuclear antigen (PCNA), the platform for assembly of the DNA replication machinery, and that unloading of Rad51 by Srs2 helicase is required for efficient PCNA loading and restoration of resected DNA As a result, srs2Δ mutants are deficient in DNA repair correlating with extensive DNA processing, but this defect in srs2Δ mutants can be suppressed by inactivation of the resection nuclease Exo1. We propose a model in which during re-synthesis of resected DNA, the replication machinery must catch up with the preceding processing nucleases, in order to close the single-stranded gap and terminate further resection.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN/metabolismo , Recombinación Homóloga , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinasas/metabolismo , Reparación del ADN por Recombinación , Modelos Biológicos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
DNA Repair (Amst) ; 42: 11-25, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27130983

RESUMEN

Homologous recombination (HR) is essential for maintenance of genome stability through double-strand break (DSB) repair, but at the same time HR can lead to loss of heterozygosity and uncontrolled recombination can be genotoxic. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to modulate recombination, but the exact mechanism of this regulation remains unclear. Here we show that SUMOylation stabilizes the interaction between the recombination mediator Rad52 and its paralogue Rad59 in Saccharomyces cerevisiae. Although Rad59 SUMOylation is not required for survival after genotoxic stress, it affects the outcome of recombination to promote conservative DNA repair. In some genetic assays, Rad52 and Rad59 SUMOylation act synergistically. Collectively, our data indicate that the described SUMO modifications affect the balance between conservative and non-conservative mechanisms of HR.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Mitosis/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Sumoilación , Cromosomas Fúngicos/genética , Daño del ADN , Proteínas de Unión al ADN/química , Lisina/metabolismo , Dominios Proteicos , Proteína Recombinante y Reparadora de ADN Rad52/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
12.
Genes Dev ; 30(6): 700-17, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26966248

RESUMEN

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.


Asunto(s)
Intercambio Genético/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , ARN Helicasas DEAD-box/genética , Eliminación de Gen , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Proteínas de Unión a Telómeros/genética
13.
J Biol Chem ; 291(14): 7594-607, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26861880

RESUMEN

Srs2 plays many roles in DNA repair, the proper regulation and coordination of which is essential. Post-translational modification by small ubiquitin-like modifier (SUMO) is one such possible mechanism. Here, we investigate the role of SUMO in Srs2 regulation and show that the SUMO-interacting motif (SIM) of Srs2 is important for the interaction with several recombination factors. Lack of SIM, but not proliferating cell nuclear antigen (PCNA)-interacting motif (PIM), leads to increased cell death under circumstances requiring homologous recombination for DNA repair. Simultaneous mutation of SIM in asrs2ΔPIMstrain leads to a decrease in recombination, indicating a pro-recombination role of SUMO. Thus SIM has an ambivalent function in Srs2 regulation; it not only mediates interaction with SUMO-PCNA to promote the anti-recombination function but it also plays a PCNA-independent pro-recombination role, probably by stimulating the formation of recombination complexes. The fact that deletion of PIM suppresses the phenotypes of Srs2 lacking SIM suggests that proper balance between the anti-recombination PCNA-bound and pro-recombination pools of Srs2 is crucial. Notably, sumoylation of Srs2 itself specifically stimulates recombination at the rDNA locus.


Asunto(s)
ADN Helicasas/metabolismo , ADN de Hongos/metabolismo , ADN Ribosómico/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinación Genética/fisiología , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , ADN Helicasas/genética , Reparación del ADN/fisiología , ADN de Hongos/genética , ADN Ribosómico/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteína SUMO-1/genética , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación/fisiología
14.
Nucleic Acids Res ; 44(7): 3176-89, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26792895

RESUMEN

Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Reparación del ADN por Recombinación , Secuencias de Aminoácidos , ADN/biosíntesis , ADN Polimerasa III/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Células HEK293 , Humanos , Ubiquitina-Proteína Ligasas/fisiología , Rayos Ultravioleta
15.
Cell Cycle ; 14(15): 2439-50, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26083678

RESUMEN

DNA double-strand break repair by the error-free pathway of homologous recombination (HR) requires the concerted action of several factors. Among these, EXO1 and DNA2/BLM are responsible for the extensive resection of DNA ends to produce 3'-overhangs, which are essential intermediates for downstream steps of HR. Here we show that EXO1 is a SUMO target and that sumoylation affects EXO1 ubiquitylation and protein stability. We identify an UBC9-PIAS1/PIAS4-dependent mechanism controlling human EXO1 sumoylation in vivo and demonstrate conservation of this mechanism in yeast by the Ubc9-Siz1/Siz2 using an in vitro reconstituted system. Furthermore, we show physical interaction between EXO1 and the de-sumoylating enzyme SENP6 both in vitro and in vivo, promoting EXO1 stability. Finally, we identify the major sites of sumoylation in EXO1 and show that ectopic expression of a sumoylation-deficient form of EXO1 rescues the DNA damage-induced chromosomal aberrations observed upon wt-EXO1 expression. Thus, our study identifies a novel layer of regulation of EXO1, making the pathways that regulate its function an ideal target for therapeutic intervention.


Asunto(s)
Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/genética , Exodesoxirribonucleasas/metabolismo , Sumoilación/fisiología , Antineoplásicos Fitogénicos/farmacología , Camptotecina/farmacología , Línea Celular , Cisteína Endopeptidasas/metabolismo , Enzimas Reparadoras del ADN/genética , Exodesoxirribonucleasas/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Estabilidad Proteica , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
PLoS Genet ; 11(1): e1004899, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569253

RESUMEN

Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Endonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación/genética , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Humanos , Fosforilación , Saccharomyces cerevisiae , Solubilidad
17.
Cell Rep ; 9(1): 143-152, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25263559

RESUMEN

DNA repair scaffolds mediate specific DNA and protein interactions in order to assist repair enzymes in recognizing and removing damaged sequences. Many scaffold proteins are dedicated to repairing a particular type of lesion. Here, we show that the budding yeast Saw1 scaffold is more versatile. It helps cells cope with base lesions and protein-DNA adducts through its known function of recruiting the Rad1-Rad10 nuclease to DNA. In addition, it promotes UV survival via a mechanism mediated by its sumoylation. Saw1 sumoylation favors its interaction with another nuclease Slx1-Slx4, and this SUMO-mediated role is genetically separable from two main UV lesion repair processes. These effects of Saw1 and its sumoylation suggest that Saw1 is a multifunctional scaffold that can facilitate diverse types of DNA repair through its modification and nuclease interactions.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Endonucleasas/genética , Saccharomyces cerevisiae/citología , Sumoilación , Análisis de Supervivencia
18.
Nucleic Acids Res ; 42(10): 6393-404, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24753409

RESUMEN

The Saccharomyces cerevisiae Rad1-Rad10 complex is a conserved, structure-specific endonuclease important for repairing multiple types of DNA lesions. Upon recruitment to lesion sites, Rad1-Rad10 removes damaged sequences, enabling subsequent gap filling and ligation. Acting at mid-steps of repair, the association and dissociation of Rad1-Rad10 with DNA can influence repair efficiency. We show that genotoxin-enhanced Rad1 sumoylation occurs after the nuclease is recruited to lesion sites. A single lysine outside Rad1's nuclease and Rad10-binding domains is sumoylated in vivo and in vitro. Mutation of this site to arginine abolishes Rad1 sumoylation and impairs Rad1-mediated repair at high doses of DNA damage, but sustains the repair of a single double-stranded break. The timing of Rad1 sumoylation and the phenotype bias toward high lesion loads point to a post-incision role for sumoylation, possibly affecting Rad1 dissociation from DNA. Indeed, biochemical examination shows that sumoylation of Rad1 decreases the complex's affinity for DNA without affecting other protein properties. These findings suggest a model whereby sumoylation of Rad1 promotes its disengagement from DNA after nuclease cleavage, allowing it to efficiently attend to large numbers of DNA lesions.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , ADN/metabolismo , Endonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Endonucleasas/química , Endonucleasas/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Lisina/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina-Proteína Ligasas/fisiología
19.
Nucleic Acids Res ; 41(10): 5341-53, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23571759

RESUMEN

Non-homologous end-joining (NHEJ) repairs DNA double-strand breaks by tethering and ligating the two DNA ends. The mechanisms regulating NHEJ efficiency and interplay between its components are not fully understood. Here, we identify and characterize the SUMOylation of budding yeast Lif1 protein, which is required for the ligation step in NHEJ. We show that Lif1 SUMOylation occurs throughout the cell cycle and requires the Siz SUMO ligases. Single-strand DNA, but not double-strand DNA or the Lif1 binding partner Nej1, is inhibitory to Lif1 SUMOylation. We identify lysine 301 as the major conjugation site and demonstrate that its replacement with arginine completely abolishes Lif1 SUMOylation in vivo and in vitro. The lif1-K301R mutant cells exhibit increased levels of NHEJ repair compared with wild-type cells throughout the cell cycle. This is likely due to the inhibitory effect of Lif1 SUMOylation on both its self-association and newly observed single-strand DNA binding activity. Taken together, these findings suggest that SUMOylation of Lif1 represents a new regulatory mechanism that downregulates NHEJ in a cell cycle phase-independent manner.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , ADN/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Lisina/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética
20.
Nucleic Acids Res ; 40(16): 7831-43, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22705796

RESUMEN

The Srs2 DNA helicase of Saccharomyces cerevisiae affects recombination in multiple ways. Srs2 not only inhibits recombination at stalled replication forks but also promotes the synthesis-dependent strand annealing (SDSA) pathway of recombination. Both functions of Srs2 are regulated by sumoylation--sumoylated PCNA recruits Srs2 to the replication fork to disfavor recombination, and sumoylation of Srs2 can be inhibitory to SDSA in certain backgrounds. To understand Srs2 function, we characterize the mechanism of its sumoylation in vitro and in vivo. Our data show that Srs2 is sumoylated at three lysines, and its sumoylation is facilitated by the Siz SUMO ligases. We also show that Srs2 binds to SUMO via a C-terminal SUMO-interacting motif (SIM). The SIM region is required for Srs2 sumoylation, likely by binding to SUMO-charged Ubc9. Srs2's SIM also cooperates with an adjacent PCNA-specific interaction site in binding to sumoylated PCNA to ensure the specificity of the interaction. These two functions of Srs2's SIM exhibit a competitive relationship: sumoylation of Srs2 decreases the interaction between the SIM and SUMO-PCNA, and the SUMO-PCNA-SIM interaction disfavors Srs2 sumoylation. Our findings suggest a potential mechanism for the equilibrium of sumoylated and PCNA-bound pools of Srs2 in cells.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Secuencia de Aminoácidos , Lisina/metabolismo , Datos de Secuencia Molecular , Antígeno Nuclear de Célula en Proliferación/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...